Research article

Discovery of Drug Candidate from Various Natural Products as Potential Novel Dengue Virus Nonstructural Protein 5 (NS5) Inhibitor

Arief Hidayatullah1, Wira Eka Putra1,2,*, Wa Ode Salma3, Bayyinatul Muchtaromah4, Galuh Wening Permatasari5, Hendra Susanto1,3, Diana Widiastuti6, and Muhammad Kismurtono7

1 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang 65145, Indonesia
2 Department of Biotechnology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang 65145, Indonesia
3 Department of Nutrition, Faculty of Public Health, Halu Oleo University, Indonesia
4 Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim, Malang 65144, Indonesia
5 Indonesian Research Institute for Biotechnology and Bioindustry, Bogor, Indonesia
6 Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Indonesia
7 Research Unit for Natural Product Technology, The Indonesian Institute of Science, Indonesia

Abstract Dengue is a severe health problem, especially in under-developing countries like Indonesia. The government and the community have made various efforts. However, the current programs are focusing on controlling disease vector. Medical treatment so far only treats the symptoms. On the other hand, the development of antiviral compounds has been dominated by synthetic compounds which may have serious side effects. The potential of natural compounds in Asia is still largely unexplored. Dengue virus nonstructural protein 5 (NS5) is highly conserved in all serotypes. This study aims to screen several potential natural compounds to be developed as specific antiviral compounds targeting DENV NS5. This research conducted by using in silico approaches including data mining, molecular docking, and 2D-3D visualization. About 170 compounds from 88 organisms analyzed to get the top nine compounds with the highest affinity against NS5 protein. The top nine compounds are from the halichondramide, trigocherriolide, quinadoline, tryptoquivaline, and zingiberene groups. The docking results showed that these potential compounds have an affinity of about 67-100% higher than ribavirin. The visualization results show that these compounds are grouped into three different binding sites. They are RdRP, MTase, and the junction. Compounds that bind in RdRP are thought to interfere with the process of RNA viral synthesis, compounds that bind to MTase are thought to disrupt the viral RNA capping process, while compounds that bind between the two domains are thought to interfere NS5 structural integrity. The compound with the highest affinity is halishigamide A. Halishigamide A is known to have antimicrobial properties, but the action mechanism is still unknown. Compared to the control drug, the halishigamide A tends to have more dynamic movement and interaction to the target protein’s binding site due to its residues’ chemicals motive. Together, these results showed the potency of natural products as specific antiviral compounds targeting DENV NS5.

Keywords: Antiviral compounds, Bioinformatics, DENV-2 NS5, Halishigamide A, Ribavirin

Funding: This study is funded by PNBP Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang research grant (Wira Eka Putra).


Editor:
Wasu Pathom-Aree,
Chiang Mai University, Thailand

Article history:
Received: June 24, 2020;
Revised: September 11, 2020;
Accepted: October 22, 2020;
https://doi.org/10.12982/CMUJNS.2021.018

Corresponding author:
Wira Eka Putra,
E-mail: wira.putra.fmps@um.ac.id