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ABSTRACT
The role of viscoelasticity of collagen fibers in articular cartilage was examined in

compression and tension, using stress relaxation measurements in axial direction (normal
to the articular surface). In this study, the degree of inherent stiffness anisotropy of
completely-decomposed element was evaluated using finite element method. The model
accounted for elastic deformations of the nanostructure in contact and assumed laminar
flow in the created voids. The stiffness parameters from the laboratory tests were utilized in
analysis which the elasticity of the solid phase was investigated in the present study. The
results were suggested that the dominant mechanism for stress relaxation arose from fluid
pressurization, while the associated relaxation in collagen fibers mainly was resulted in an
increase in radial strain. Furthermore, Young’s modulus normal to the contact surface
was increased from the superficial to the deep zone in articular cartilage.
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INTRODUCTION
Articular cartilage consists of three major structural constituents: collagen fibers,

proteoglycan matrix and interstitial water. The function of articular cartilage serves mainly as
a load-bearing medium in joints, thus the structure of cartilage is customarily designed to
carry high stresses. Articular cartilage is a poroelastic material consisting of a fluid compo-
nent (75% wet weight) and a solid matrix (20–25% wet weight), which the solid phase of
articular cartilage is mainly composed of collagen (65%), proteoglycan (25%), glycoprotein
and chondrocytes (<10%), and lipid (<10%) (Minns and Steven, 1977; Stockwell, 1979;
Jones et al., 1997).

Recent developments in mathematical modeling have improved the understanding of
cartilage mechanics, such as Mow et al.,(1980), Holmes and Mow (1990), Guilak et al.,(1995),
Garcia et al.,(1998), and Donzelli et al.,(1999). They have suggested that the proteoglycans
are negatively-charged and produce a swelling pressure that depends on the saline concentra-
tion of the fluid. At equilibrium and physiological conditions, the swelling pressure is coun-
teracted by the external load and the structural elements in the solid matrix, mainly the
collagen fibers. Since collagen fibers, chondrocytes and the other components in the solid
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phase have different and distinctly-directional material properties, then articular cartilage is a
composite with anisotropic material properties.

However, the importance of collagen fibers for the mechanical function and integrity
of cartilage has been demonstrated experimentally by Kwan et al.,(1990), Sasaki and Odajima
(1996), Khalsa and Eisenberg (1997), and Li and Herzog (2004). At the same time, the stress
relaxation and responses of articular cartilage have been observed in many testings where the
viscoelasticity is attributed primarily to the collagen fibers, as have been found for other soft
tissues in tension and compression (Lee and Rowe, 1989; Pin et al., 1997; Huang et al., 2001;
Missirilis and Spiliotis, 2002). So it is well accepted that chondrocytes play an important role
in cartilage adaptation and degeneration. The mechanical environment of chondrocytes can
stimulate and regulate the biosynthetic activities in the cell.

Furthermore, Minns and Steven (1977) were found that the articular cartilage can be
divided into three distinct morphological zones as superficial zone, middle zone and deep
zone. In the superficial zone (10–20% of the total thickness), collagen fibers are oriented
parallel to the articular surface. While in the middle zone (40–60% of the total thickness),
there is no preferred orientation for the collagen fibers, and in the deep zone (30% of the total
thickness), the collagen fibers are approximately perpendicular to the articular surface. In
normal cartilage, chondrocytes change shape across the thickness (Guilak et al., 1995):
chondrocytes are typically flattened in the surface zone, spherical in the middle zone and
arranged in columns in the deep zone. The distribution of chondrocytes in cartilage is not
uniform: the average cell volumetric concentration increases from the deep zone to the sur-
face zone by a factor of about three (Jone et al., 1997).

The purpose of this study was to investigate the effects of the structural arrangement of
the collagen fiber network and distribution of stress-strain on the global material behavior of
articular cartilage by using finite element method. So, the effective material properties of
articular cartilage was assumed to be a four-phasic composite of a proteoglycan matrix,
vertically-and horizontally-distributed collagen fiber, and spheroidal inclusions representing
chondrocytes (Qiu and Weng, 1990).

MATERIALS AND METHODS
Because of the great difference in material properties between proteoglycan matrix,

cells and collagen fibers, cartilage is not a uniform material. In order to include these struc-
tural, non-uniform effects, cartilage has been represented using a transversely-isotropic ma-
terial (e.g., Garcia et al., 1998; Donzelli et al., 1999). So, the global material properties have
not been related to the microstucture of the tissue. Li and Herzog (2004) investigated theo-
retically the effects of the collagen fiber network on anisotropy of cartilage properties. In
their models, the effect of volumetric concentration of collagen fibers, the structure of the
fiber network, and the distributed chondrocytes were not included. Since the material aniso-
tropy of cartilage is likely caused by microstructural variations in the tissue, i.e., the distribu-
tion of cartilage fibers and chondrocytes, the description of cartilage using a uniform, trans-
versely isotropic model is not appropriate.

However, in this study, we used axisymmetrical model to simulate the behavior of the
cross-anisotropic elastic material in which the horizontal plane is isotropic, and denoting
axes x and y as the horizontal directions, and axis z as the vertical directions, as shown in
Figure 1 and Figure 2. Then the effective stress-strain relationship of the element can be
described. If the stress-strain behavior is governed by five independent elastic parameters:
Ev, Eh, Gvh (=Ghv), vvh, and vhh, where Ev and Eh are the Young’s moduli in the vertical and
horizontal directions, respectively; Gvh (=Ghv) is the elastic shear modulus in any vertical
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plane; vvh is the Poisson’s ratio for the effect of vertical strain on horizontal strain; and  Vhh is
the Poisson’s ratio for the effect of horizontal strain on the complementary horizontal strain.
Then the relationship of stress-strain can be written by the following (Lee and Rowe, 1989).

(1)

where Gr (t) δεh1 and δεh2 are the incremental horizontal strains in the h1 and h2 direc-
tions, respectively; δεv is the incremental vertical strain; δσh1 and δσh2 are the incremental
effective horizontal stresses in the h1 and h2 directions (x and y directions), respectively; δσv

is the incremental effective vertical stress; δγhv is the incremental shear strain in the h-v plane;
δγhv is the incremental shear strain in the v-h plane; δγhh is the incremental shear strain in the
h-h plane; δτhv is the incremental shear stress in the h-v plane; δτvh is the incremental shear
stress in the v-h plane; and δτhh is the incremental shear stress in the h-h plane.

For the model simulation, we used ANSYS finite element code for analysis under the
conditions of finite deformation kinematics. The material was considered to be elastic-
plastic. Isotropic linear elasticity was assumed, combined with isotropic hardening. An
axisymmetric model with 9,800 eight-node elements with reduced integration was used to
model a quadrant of the 3D indentation process (based on symmetry). The indenter itself is
modeled using two four-node tetrahedral elements which are purely elastic with the stiffness
much greater than that of the indented material. In Figure 2, several levels of mesh refine-
ment are used in the model to give a very fine mesh near the contact zone. In this region, the
stress field can be accurately determined. The conical indenter is modeled as a rigid surface
which rotated about the axis of symmetry. A convergence study was performed to ensure that
the final result was not mesh-dependent.
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Figure 1. Diagram of indentation model on articular cartilage.

At the same time, a fibril-reinforced model (Huang et al., 2001; Li and Herzog, 2004)
was used, which consisted of a fluid-saturated elastic matrix and a collagen viscoelastic
matrix. Next, the properties of cartilage (Mow et al., 1980; Guilak et al., 1995; Missirilis and
Spiliotis, 2002) were defined by three strain-dependent tensile moduli of the fibrillar matrix
for the coordinate directions, Er

f (εr), Eθ
f 
(εθ ), Ez

f(εz) as the model tested. Thus the fibers are
in tension, the fibrillar stresses are determined by the hereditary integrals. For the radial (r)
direction, we obtained
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Figure 2. The model of axisymmetric model of single cell within the articular surface.
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stress, Er
f  is the fibrillar modulus

Furthermore, Li and Herzog (2004) were found that the viscoelastic dissipation of the
radial fibers had relatively more influence on the compressive load response in early relaxa-
tion. In late relaxation, the actual fibrillar modulus (Gr(t)Er

f) was reduced considerably,
resulting in an increase in the radius strain. So, the axial and radial stresses of the proteoglycan
matrix at equilibrium are

(3)

and (4)

This formulation, to some extent, accounts for nonlinear viscoelasticity, because of the
strain-dependence of the modulus (while Gr is independent on the strain and strain rate). The
relaxation function is represented by a discrete spectrum approximation.

(5)

Here, λm is characteristic times for the viscoelastic dissipation and gm is dimensionless
constants.

RESULTS AND DISCUSSION
For the computation, we were used axisymmetric FEA models of knee joint which the

articular cartilage layers of the tibial and femoral condyles, and the bone underlying the
articular cartilage of the tibia plateau were included. As in the study, we assumed that the
permeability of the articular cartilage was strain-dependent. So, the model was implemented
in ANSYS code, it consisted of 9,800 elements. The elements in the area under the contact
surface had a characteristic length 1–15 nm. This can lead to initial mismatch between the FE
model and test results at indentation depths closed to the radius magnitude.

In the test of the contact of a cartilage surface, the reaction forces predicted for the
stress-relaxation tests were based on infinitesimal strain theory (Khalsa and Eisenberg, 1997;
Donzelli et al., 1999). When a step load was applied to the articular cartilage and this load
was increasingly different with increasing time, then the solutions approached the elastic
solution and the interstitial fluid was pushed out of the cartilage tissue. Figure 3 illustrates the
reaction force predicted using ANSYS for a test with an axisymmetrical joint model, which
the material properties and geometry used in the simulations were Young’s modulus, Es =
0.55 MPa, the cartilage layer thickness, b = 0.5 mm, the radius of curvature of the contacting
surface, r = 25 mm, and the compression ratio, e = 3–10%. The results showed that the
reaction force was varied by the compression ratio and the permeability of the cartilage which
depends on the deformation state of the cartilage. Thus, this analytical solutions are in good
agreement for small trains (compression ratio, e is smaller than 10%) and for limited time
periods.
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Figure 3. The reaction force predicted using ANSYS for a test with an axisymmetrical joint
model.
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Figure 4. The force indentation depth curve for the finite element simulation of various yield
strength.

Next, we were to find the best-fit material parameters by matching the experimentally
measured transient reaction force with the corresponding of Equation (2). Figure 4 shows an
equivalent force indentation depth curve obtained using the equivalent 2D axisymmetric model.
In this test, the indentation was done to a depth between 0–100 nm with different force
0–100 N, and various yield strength values. The results showed that peak stress-relaxation
nearly matched the peak force at the end of each ramp-displacement, indicating significant
interstitial fluid load support, and that stress-relaxation equilibrium occurred when the fluid
pressure had subsided. Therefore, the sensitivity of the results to indenter tip sharpness was
explored. So, the contact area is not only dependent on the area function of the indenter but
also on the elastic-plastic response of the material.
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Figures 5 and 6 show the comparison of the effective Poisson’s ratio of cartilage in
axial compression and tension for one-step ramp loading with 8.0 µm at 1 (m/s followed by
Equation (3) and (4) into ANSYS. In a ramp compression-relaxation test, the effective Poisson’s
ratio (–εr / εz) decreased monotonically from 0.6 towards a low value of 0.1, regardless of the
contact conditions. However, the effective Poisson’s ratio was sensitive to the contact condi-
tions in axial tension: for frictionless contact conditions, the ratio slowly changed from 0.6
towards the Poisson’s ratio of the nonfibrillar matrix (0.35); for the adhesive contact condi-
tions, it did not change monotonically. Consequently, these results agree with the sense that
the ratio is normally larger for tension than for compression, and that the ratio for tension can
be greater than 0.5 (Figure 6). The results show a large influence of the contact conditions on
the lateral strain of a specimen in tension. At the same time, the effective Poisson’s ratio
(–εr / εz) deviates from the true Poisson’s ratio of the tissue, depending on the length/width
ratio of the specimen. The large ratio (>0.5) shown in Figure 6 were produced by such devia-
tions, rather than a material anisotropy (which is also the reason for large/small Poisson’s
ratios). Thus, the result (Figure 6) also shows the influence of fluid pressurization on the
radial strain in axial tension (for frictionless contact conditions). Then the effective Poisson’
s ratio was sensitive to the contact conditions in axial tension: for frictionless conditions, the
ratio slowly changed from 0.6 toward the Poisson’s ratio of the nonfibrillar matrix; for the
adhesive contact conditions, it did not change monotonically.

Figure 5. Comparison of the effective Poisson’s ratio (–εr / εz) of cartilage in axial compres-
sion for one-step ramp loading.
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Figure 6. Comparison of the effective Poisson’s ratio (–εr / εz) of cartilage in axial tension
for one-step ramp loading.

CONCLUSION
Collagen fibers are structural elements in articular cartilage. The structure of the

collagen network is through to be related to the mechanical stability of the tissue (Minns and
Steven, 1977). So, the collagen fibers are oriented to achieve an optimal tangential stiffness
of the tissue. The present study was intended to investigate the dependence of the material
properties of articular cartilage on the combination of the collagen fiber network structure
and the distributed chondrocyte structure. In the nanoindentation test, it suggests that a soft,
spheroidal inclusion in a fiber-reinforced structure such as articular cartilage with collagen
fibers and chondrocytes gives different material properties depending on the shape of the
spheroidal inclusions. Therefore, the investigation illustrates that the variations in the com-
puted ground deformations depend on the degree of stiffness anisotropy (including effects of
Poisson’s ratio) and the relative magnitudes of horizontal and vertical stress change.
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