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ABSTRACT
It is shown that there is a linear subspace of the Banach space of all null real

sequences that admits a nonlinear isometry onto some algebraic base of itself.
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INTRODUCTION
The nonlinear Banach space theory represents today a flourishing field of research and,

particularly, questions related to the existence of uniform or Lipschitz homeomorphisms
between a Banach space and some subset of another. See for exemple, the beautiful results
(Aharoni et al., 1985), concerning the class of Banach spaces that may be embedded into a
Hilbert sphere.

The question whether a Banach space can be homeomorphic to a Hamel base of itself
was raised by the second author (Duma, 2001). A partial, negative answer was settled
(Bartoszynski et al., in press), using the fact that no separable Banach space can have an
analytic Hamel basis. Nevertheless, this problem seems to remain unanswered in the non-
separable framework.

However, if we restrict ourselves to the normed (not necessarily complete) spaces
context, then one can prove a stronger, affirmative result and this will be the main purpose of
the present paper. In the sequel, we shall denote by c0 the usual Banach space of all real
sequences converging to zero, endowed with its natural sup-norm. For further references and
information concerning classical Banach spaces, one may consult Day (1973), Lacey (1974),
Lindenstrauss and Tzafriri (1977) and Beauzamy (1985).

THE MAIN RESULT
Theorem 1. There exists a linear, infinite-dimensional subspace of c0 that is isometric

to a Hamel base of itself.
The proof of this result, which will be given in the third section, heavily relies on the

followings:
Lemma 2. There is a nonlinear isometry T : c0 ➝  c0 having linearly independent range.
Proof. Let us define first a one-to-one, nonexpansive mapping C : c0 ➝  c0 having

linearly independent range.
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With this goal in mind, let us consider a bijection

k ➝  (ik , jk)

from N* to N* x N* and let us pick a sequence (Wm)m  1  ⊂   c0 that is dense in c0. Next,
let us introduce the mapping C : c0 ➝  c0 defined by the formula

Clearly, C satesfies ||Cx – Cy||  ||x – y|| for all x,y in c0. In order to prove that C is
injective and its range is linearly independent, let us take a finite family of distinct vectors
(xp)1 p n ⊂  c0 and a corresponding set of scalars (λp)1 p n such that

It follows that  λp(Cxp)k = 0 for each k in N* . Let δ = min||xq – xr|| > 0 and let us

choose an i in N* so that

Since (Wm)m  1  is dense, it is possible to find, for any fixed p*, some j in N* with

||xp* – wj|| <      . Now, let k in N* satisfying ik = i and jk = j . Then one get

for every q ≠ p* and, consequently, λp* • max (0,      – ||xp* – wj||)= 0, from which one
obtain λp* = 0.

To end the proof of Lemma, let us define the linear operators A,B: c0 ➝  c0 by

Ax = (x1,0, x2,0,x3,0,...). and
Bx = (0,x1,0,x2,0,x3,...),

where x = (x1,x2,x3,...) ∈  c0.
Finally, we introduce the operator T : c0 ➝  c0 , expressed by T = A + BC , i.e.,

Tx = (x1,(Cx)1,x2,(Cx)2,x3,(Cx)3,...).

Obviously, we have ||Tx – Ty|| = max {||x – y|| , ||Cx – Cy||} = ||x – y||, hence T is an
isometry. Since C is a bijection between c0 and a suitable linearly independent subset, it
follows that T has the same property. The Lemma is proved. ■

Cx =        . max   0       –  || x – wjk ||             (x ∈  c0) .
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PROOF OF THE THEOREM
Because the above built operator T is an isometry, we obtain, as a consequence of the

Banach Contraction principle, the existence of some b* ∈  c0, such that Tb* = 2b*.Clearly,
b* ≠ 0.

Let now define the following family of subsets of c0 :

F = {S ⊂   c0  | S is a linear subspace; b* ∈  S and T (S) ⊂  S}.

Since c0 belongs to F, one may conclude that F is non-empty. Then, it makes sence to
define

X =   ∩   S,

which evidently is a linear subspace of c0 , containing b* . Hence, dim X  1. We shall
prove that span T (X) = X .

STEP 1 : Since X ⊂  S for each S in F, it follows that T (X) ⊂  T (S) ⊂ S for each S in F,
whence span T (X) ⊂ S (S ∈  F) . Consequently, span T (X) ⊂  X.

STEP 2 : Let us denote span T (X) by M . Now, from M ⊂ X one get T (M) ⊂ T (X) ⊂  M.
It is easy to remark that b* lies in M , thus M ∈  F . Then, X ⊂  M , which, in turn, gives us
X = M .

Finally, observe that dim X = |T (X)| must be infinite, because finite-dimensional
subspaces have finite bases. This proves the Theorem.
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