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Abstract Land surface temperature (LST) data derived from the satellite is 

increasingly required to supplement the limited weather stations for assessing 

temperature trends in Antarctica. This study analyses the LST based on data from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s 

satellite length from 2000 to 2019 at a systematic 108 sub-regions. Antarctica 

was divided into 12 regions, each consisting of 9 sub-regions. A cubic spline model 

adjusted for seasonal patterns and the autoregressive process adjusted for time 

series correlation. Change in LST in sub-regions was estimated by fitting the 

simple linear model, while cycle and acceleration were estimated using cubic 

spline models. Multivariate regression adjusted for spatial correlation and was 

used to estimate the LST increase in regions. The seasonal patterns for all 108 

sub-regions were found to be quite similar. Out of 108 sub-regions, only 30 had 

statistically significant decreasing trends. The 12 regions showed that most  

temperature trends decreased, although only 5 regions were statistically 

significant. The results for the entire Antarctic continent showed a statistically 

significant decrease and a 95% confidence interval ranging from -0.668 to -0.068 °C 

per decade. 
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INTRODUCTION 

A cubic spline is a potential alternative method to model the time series of 

land surface temperature (LST). Recent studies have reported LST change using the 

cubic spline model (Wongsai et al., 2017; Devi et al., 2020; Prasetya et al., 2020; 

Munawar et al., 2020; Wongsai et al., 2020; Munawar et al., 2021). In the studies 

mentioned above, warming or cooling trends were observed at various places on 

both local and regional scales. However, these studies focused only on Southeast 

Asia, where temperature changes are affected mainly by human activities and land 

use or land cover change. There is overwhelming evidence that human activities, 

notably the burning of fossil fuels, increase carbon dioxide and other greenhouse 

gases in the atmosphere, causing the land surface temperature to increase. The 

temperature is warmest for places covering urban and built-up land, whereas it is 

coolest for places covering water bodies and forests. Apart from human activities, 

climate change is also affected by natural mechanisms. In places like the Arctic and 

Antarctic continents, climate changes mainly occur due to natural mechanisms. The 

question of whether the sensitivity to climate change places that are purely affected 

by natural mechanisms has warmed or cooled is crucial.  

Antarctica, the largest ice region globally, is one of the world regions that  is 

the most sensitive to climate change. The Antarctic ice sheet is of particular interest 

due to its contribution to the sea-level rise that could impact more than 200 million 

people living in coastal areas worldwide (Nicholls, 2011). Moreover, previous studies 

have found different temperature variations over Antarctic regions (Comiso, 2000; 

Shuman and Stearns, 2001; Steig et al., 2009). Some regions are warming while 

others are cooling. Over the past two decades, many studies have consistently 

found warming temperatures in the Antarctic Peninsula. However, findings on 

temperature changes in West and East Antarctica are not consistent (Shuman and 

Stearns, 2001; Kejna, 2003; Steig et al., 2009; Nicolas and Bromwich, 2014). The 

entire Antarctica temperature does not show significant warming or cooling trends 

(Monaghan et al., 2008; Steig et al., 2009; Schneider et al., 2012; Nicolas and 

Bromwich, 2014). The temperature change further raises the need to study trend 

patterns in this region. 

Studies have also reported that temperature variations in Antarctica vary by 

time. In the last two decades, the temperature has been rising in the Antarctic 

Peninsula but falling in most parts of East Antarctica. The variability of surface 

temperature trends is strongly dependent on time period analyzed. Statistically 

insignificant increasing trends occur in most regions during 1960-2005 (Monaghan 

et al., 2008). During the second half of the 20th century, the temperature at 

Antarctic Peninsula showed a much stronger warming trend (Vaughan et al., 2003; 

Turner et al., 2005). In stark contrast, there has been no warming since the late 

1990s, and much weaker trends have been observed elsewhere in Antarctica 

(Turner et al., 2016; Ludescher et al., 2016; Gonzalez and Fortuny, 2018). Current  

temperatures at West Antarctica and Antarctic Peninsula have warmed in the second 

half of the 20th century. However, in the first two decades of the 21s t century, a 

striking reversal of the temperature trend was observed (Turner et al., 2016; Oliv a 

et al., 2017; Clem et al., 2020). Although previous studies suggest slight continental 

warming, the Antarctic continent covers an area larger than Europe. Therefore, 

there is a naturally marked spatial variation in temperature trends. Many long-term 

measurements from Antarctic research showed no significant warming or cooling 

trends, and temperatures have been relatively stable in most of the continent over 

the past few decades. Attempting to develop a long-term temperature trend for the 

whole Antarctic continent is almost meaningless because there is no long-term in 

situ temperature measurements for large areas. The trends from the various 

stations showed a spatially complex picture of change on the continent during the 

last decade and did not indicate consistent warming or cooling (Walsh et al., 2002). 

A limitation of the Antarctic weather station is that temperature records were 

mainly based on a few stations, which are mostly located in the coastal region. 

Surface temperature distributions also vary from station to station, and the trends 
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may differ even at adjacent stations (Jacka and Budd, 1998). Previous air 

temperature analyses may have significant errors because of the limitation of 

available in situ observations and large seasonal and inter annual variability in 

regional air temperature (Rutherford et al., 2005). Recently, satellite data sets are 

freely available and have been of high interest to the scientific community. Satellites 

have provided complete spatial coverage of various parameters in a landscape. They 

see the entire landscape and can make precise measurements of any location. 

These satellite data with high temporal and spatial resolution offer several 

opportunities to research and monitor climate change on local and regional scales. 

Therefore, much attention has been paid to the use of remote sensing-based land 

surface temperatures. 

In this study, LST products derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) aboard Terra spacecraft have been used to detect 

temperature variations and trends in Antarctica. The main objective of this study is 

to analyse LST across Antarctica in recent decades (March 2000 to February 2019) 

using a daytime LST (MOD11A2) product. The MOD11A2 product provides an 

average eight-day per-pixel LST with a 1-square kilometre spatial resolution, 

considering only the grounded ice sheet or mainland. Statistical methods were 

applied to adjust seasonal patterns, time series autocorrelation, and spatial 

correlation across spaces. The long-term trend patterns of LST were detected using 

linear and cubic spline models. The analysis was performed at the sub-regional 

level, regional level, and the entire Antarctic continent. 

 

 

MATERIAL AND METHODS 

Study area 
The study area is in Antarctica. It is the southernmost continent, overlying the 

south pole with a parallel latitude on the Earth at approximately 66.5° south of the 

equator, as shown in Figure 1. Ninety-eight percent of the land surface of Antarctica 

is covered by ice which averages at least 1.6 km in thickness. The land surface area 

of Antarctica is approximately 14 million km2. However, in this study, only grounded 

ice or mainland was considered.  

 

Figure 1. Map of Antarctica continent. 
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Data source 
The LST data have been collected by NASA’s MODIS, which flies onboard the 

Terra satellites (NASA LP DAAC, 2017). An eight-day daytime LST (MOD11A2) 

product with 1 km2 spatial resolution is a tile of daily LST product gridded in the 

sinusoidal projection freely downloaded from the global subset tool were used. 

Nineteen years of data from March 2000 through February 2019 were downloaded 

from MODIS (https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl). 

 

Sample survey design 
The sample locations used to predict  LST change in Antarctica are shown in 

Figure 2. According to the MODIS sinusoidal grid system, a sub-region comprising 

49 pixels of dimension 7×7 pixels was selected to be included in a sample. The sub-

region location was horizontally and vertically 3.357 apart according to geographic  

coordinate in decimal degrees. The 108 sub-regions were chosen for covering the 

Antarctic mainland. Some sub-regions were moved to ensure that they reside on 

the land. A group of nine neighbouring sub-regions were combined into a larger 

area and called a region. The regions are denoted with a red circle. One circle 

comprises nine green dots, and each dot represents one sub-region. Altogether, 12 

regions cover Antarctica’s mainland, namely A, B, C, D, E, F, G, H, I, J, K and L.  

The LST data were retrieved individually for 108 sub-regions from March 2000 to 

February 2019 in eight-day intervals, or approximately 46 observations per year 

and maximally 874 observations over the 19 years. Due to technical problems with 

sensors, the observations were missing across the sub-regions over the period. 

Hence the actual total observation counts for each pixel were typically below the 

maximum. The LST time series data structure in each sub-region comprised at most  

874 observations and 49 columns from 7×7 pixels. 

 
 

 

Figure 2. The study sample comprises 108 sub-regions (green point), each 

with a trapezoidal polygon 7 × 7 pixels. The red circle is a group of nine 

neighbouring sub-regions define as regions. 
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Statistical methods 
There are inevitably missing data from MODIS due to atmospheric aerosol, 

clouds, or other atmospheric conditions. The LST data for each sub-region were 

taken as an average of 49 pixels for every observation to reduce missing values and 

spatial correlation and represent temperature for each sub-region. The ARIMA 

function in the R program (R Core Team, 2013) adjusts for time series correlation. 

This function uses the state-space approach (Kalman filtering) to compute the 

likelihood of an ARIMA model even in the presence of missing values (Durbin and 

Koopman, 2001; Ripley, 2002). 

 

Cubic spline function adjusts for seasonal patterns 
Like other time-series data, LST can contain some or all the four components 

(seasonal, trend, cyclical and irregular). The seasonal variations need to be adjusted 

before the analysis of the long-term trend. The cubic spline model was used to 

capture seasonal patterns. The spline functions are simply piecewise cubic 

polynomials that are linear in the distant past and future. The natural cubic spline 

function can extract the seasonal pattern, even when successive missing values are 

in the data series (Wongsai et al., 2017). 

Using the definition of a cubic spline (see McNeil et al., 2011; Wongsai et al., 

2017), the seasonal model of LST takes the form given in (1). 
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  The regression coefficients   are estimated using linear regression 

fitted to the LST data and 1 2 3, , , , ... , pa b c c c   are estimated using linear regression 

fitted to the LST data and te  is the random error.  

However, choosing a spacing between knots and several knots for smoothing 

the spline curve defines the actual cubic  spline curve performance analysis. A large 

number of knots can result in overfitting of the data. Selecting the correct number 

of knots is a critical issue. Generally, more knots were placed in locations where 

reliable data are available. In this study, a spline with eight knots placed at day of 

the year 10, 40, 80, 130, 240, 290, 330, and 360, respectively, was used.  

 The seasonally adjusted time series of LST was computed by subtracting  

the fitted values from equation (1) and adding back the mean temperature of each 

sub-region to obtain: 

ˆ ,
adjt t ty y y y             (2) 

where 
adjty denotes LST seasonally adjusted, ty  is land surface temperature, ˆty  is 

fitted values from cubic spline model, and y  is mean of LST. 

Autoregressive process 

Since temperature data are time series, observations were recorded at a 

particular point in time. One of the assumptions in time series analysis is that the 

errors are independent. In particular, dependence usually occurs because of a 
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temporal component. Error terms that are correlated over time are said to be 

autocorrelated. The autoregressive (AR) process was applied to account for 

autocorrelation among residuals of the spline model. The AR (p) is an autoregressive 

model of a linear combination of past values at lag 1 to lag p (see Box and Jenkins, 

1970). 

The LST time series were adjusted for autocorrelation using residuals from the 

selected AR (p) model, which is given as follows: 

_
,adjt

adj filter

t

t

y

t

z

z
s

y y
s

 
 
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Where 
_adj filterty  denotes LST filtered, 

tz  is a residual from AR (p) model at time t, s 

is a standard deviation, and y  is mean of LST. 

 

Linear and cubic spline models to estimate trends, cycle and acceleration  

Generally, a linear regression model was used to determine the relationship 

between a dependent variable and one or more predictive variables. Here, LST 

filtered were first investigated by fitting a simple linear regression to investigate the 

temperature trend of each sub-region. In general, a simple linear regression has the 

form. 

_ 0 1 ,
adj filtert ty b b t                                                 (4) 

where 0b is the intercept, 1b  corresponds to the temperature change, t  is the eight-

day period, and t  is the error terms. The 1b  is further used to calculate the decadal 

LST increase. 

The cubic spline model (Equation 1 without the third boundary condition) with 

equal spacing between seven knots at years 2000, 2003, 2006, 2009, 2012, 2015 

and 2018 was fitted to the LST filtered to obtain the cyclical variations of 

temperature in nineteen years. 

Again, the cubic spline model with equal spacing between four knots in 2000, 

2006, 2012 and 2018 was fitted to the LST filtered. The four knots spline was fitted 

to estimate the acceleration of temperature change. The acceleration of 

temperature change was computed using equation (5): 
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where ik  denotes knot position with i = 1, 2, 3, 4, 1c  and 2c  denote the coefficient 

of spline four knots (Wongsai et al., 2020).  

 For the model validation, the adjusted r-squared and p-value from the fitted 

models were shown. 

 

Multivariate linear regression 

 Integrating trends from sub-regions within the same region were estimated 

using the multivariate linear regression model. However, dynamic relationships 

within and between sub-regions or regions distributed across space are called 

spatial correlations. It has been agreed that residual spatial correlation can have a 

substantial impact on modelling processes and inferences. A multivariate linear 

regression model (Mardia et al., 1979) was used to estimate the temperature 

increase in the region by taking spatial correlations into account. In general, 

multivariate linear regression has the form. 

_
,

adj filtertY XB E                                                       (6) 
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where  
_ 1 2, , ... ,

adj filtert mY y y y   is the n m  ( 9m   sub-regions) response matrix with  

1 2( , , ... , )k k k nky y y y  is k-th response vector 1n  ( 874n   observations).  

 1 ,n nX x  is 2n  the design matrix of time with 1n
  and  

nx  are an 1n  vector of 

predictors.  1 2, , ... , mB b b b  is the 2 m   matrix of coefficients with 
0 1( , )k k kb b b    

is k-th coefficient vector 2 x 1.  1 2, , , mE e e e is the n x m  error matrix with

1 2( , , , )k k k nke e e e   is k-th response error vector (n x 1). 

The standard error of the mean of the multivariate model was used to account 

for spatial correlation. The standard error (SE) takes this form in equation (7): 

SE  = 

,

,
,

m m

iji j
Var

m


                                                (7) 

where ijVar  is the variance-covariance matrix of estimates between sub-region i  

and j.   
This model (6) provides variance-covariance matrices of the estimated 

temperature change (increase or decrease) in the sub-region. Thus, confidence 

intervals (CI) for linear combinations of change were obtained. The results from the 

model were presented based on 95% confidence intervals and z-score. 

 

    95%CI =  1.96 ,Inc SE          (8) 

 

where Inc   is the average of coefficients (B) from the equation (6) and SE  is the 

standard error calculated from equation (7). 

The LST increase in sub-region and region was estimated. A thematic map 

was also created using five colours to code different LST change levels for the sub-

region (points) and the region (polygons) based on the z-score level. The “increase” 

category was divided into five levels: Increase with z > 1.96 (red), likely increase 

with z > 1 (orange), stable with |z| ≤ 1 (green), likely decrease with z < -1 (cyan) 

and decrease with z < -1.96 (blue).  

All graphical displays, statistical analysis and maps are performed using the R 

program (R Core Team, 2013). 

RESULTS 

The cubic spline curve fits the LST data in an annual period. Figure 3 illustrates 

the yearly seasonal patterns of LST for individual sub-region in region L, which cover 

Victoria land of part of East Antarctica. The vertical stacks denote the average 

temperatures on the same day for all 19 years (some values are missing), while the 

horizontal is time. The red curves are fitted spline models to LST data with 8 knots 

denoted by blue crosses. The “r-sq” label shows the adjusted r-squared value of the 

cubic spline model fitted to the data. The adjusted r-squared indicates how well the 

proposed cubic spline function was fitted to the LST data. The graph shows that 

seasonal variations in region L are quite similar while sub-region 5 is slightly 

different as it is adjacent to the coast of the Ross sea.  

In the overall continent, seasonal patterns are quite similar. A U-shaped cycle 

over the year with the coldest temperature occurred in the middle of the year while 

the warmest temperature was in December and January. This indicates that the 

cooling period is longer than the warming period.  
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Figure 3. Example of seasonal patterns of 9 sub-regions in region L. 

After obtaining the seasonal patterns for all 108 sub-regions, the seasonal 

effect must be adjusted before trend analysis. The random errors in the spline model 

of time series data are often positively correlated over time. Thus, each random 

error is more likely to be related to the previous random error. This autocorrelation 

can sometimes be detected by plotting the model residuals over time and fitting the 

autoregressive (AR) process. The AR process was applied to account for and filter 

the autocorrelation among residuals of the spline model. 

The filtered temperature data for each sub-region were subjected to several 

models to investigate temperature trend patterns. Figure 4 illustrates the fitted 

models of separate nine sub-regions in region L. The grey dots represent the filtered 

temperature. The “ar1” and “ar2” denote the coefficients (P-value) of the AR 

processes at lag1 and lag2, respectively. Most of the autocorrelation considered 

showed that AR(2) is appropriate for AR processes. Therefore, the residual of the 

second-order AR process was used to adjust the LST autocorrelations. The labels 

“r-sq0” and “r-sq” indicate adjusted R2 from the linear regression model and the 

seven knots cubic spline model. Larger pink dots denote outliers. The LST with a 

standardised residual that is larger than 9 (in absolute value) is deemed to be an 

outlier. 

The right panel shows the comparison of linear and spline curves from the 

three left panels. The thin curve in the right panel showed fitted cubic splines with 

seven knots. The thick curve is cubic splines with four knots, while the dashed line 

is linear. Most of the coefficients of spline models with four and seven knots were 

insignificant. There is no evidence of a particular cyclic pattern within the 

temperature fluctuation over the past decade. The “Mean Inc/dec” indicate the rate 

of temperature increase (linear slope). The results from the linear model of LST in 

19 years show that most of LST decreased. However, sub-regions 3, 4, 5, 8 and 9 

were statistically significant. The spline coefficient with four knots was used to 

estimate the acceleration of temperature increase in °C per dacade2, denoted as 

“Acc”. 
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Figure 4. Example of trend patterns of 9 sub-regions in region L. 

At regional level and the entire Antarctic continent, the mean day LST for the 

nine neighbouring sub-regions in the region was estimated using multivariate linear 

regression. The mean day LST for all 108 sub-regions were also estimated using 

multivariate linear regression to represent LST change for the entire continent. 

However, spatial correlation between sub-regions needs to be considered. A 

multivariate linear regression model was applied to combine and estimate the 

temperature increase in the region. The standard error of the mean from this model 

is taken spatial correlation into account. 

To estimate LST change, the 95% confidence interval (CI) of LST change per 

decade for each of 12 regions and the Antarctic continent is presented in Figure 5. 

The 95% confidence interval, including zero, denote no significance. This is no 

evidence of LST change. From the result, there are 5 regions where a decrease in 

LST change occurred. These regions include C, D, H, I and L in range from -0.6384 

to -0.0394, -0.9894 to -0.2416, -0.6989 to -0.0647, -1.0275 to -0.1690 and -

0.6681 to -0.0682 °C per decade, respectively. There is no evidence of LST changes 

in regions A, B, E, F, G, J and K. It was also found that the entire Antarctica LST 

significantly decreased in the range of -0.4999 to -0.0399 °C per decade. 

 
Figure 5. The 95% confidence interval of eight-day LST changes ordered 

by region A to L and Antarctica continent. The vertical axis shows LST change 

°C per decade. 
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Considering the entire study area, Figure 6 illustrates a thematic map of the 

result, using five different colours to code the different levels of LST change for the 

sub-region points and the regions polygons based on z-scores. At the sub-region 

level, the LST trends of 108 sub-regions across the study area in Antarctica are 

classified into five groups. The LST trend significantly decreased in 30 sub-regions 

(z-score <-1.96). LST will likely decrease in 17 sub-regions (z-score <-1) and  

likely increase in 3 sub-regions (z-score >1). LST was stable in 58 sub-regions  

(-1 < z-score < 1). At the regional level, the LST trends of 12 regions are also 

classified into five groups. The LST trend significantly decreased in regions C, D, H, 

I and L (z-score < -1.96), LST will likely decrease in regions E, G and K  

(-1.96 < z-score < -1) and LST stable in regions A, B, F and J (-1 < z-score < 1). 

 

Figure 6. LST variation of each sub-region in 12 regions. The circle represents 

the sub-region, whereas the polygon represents the region. The circle in pink colour 

indicates. 

DISCUSSION 

In this study, the seasonal pattern of temperature Antarctic wide is quite 

similar. The winter season begins in March and lasts until October, while the 

summer season starts in October and ends in March. The seasonal patterns were 

quite similar in shape in the whole study as the area’s geographical features are 

almost indifferent. This study found that the magnitude of the temperature slightly 

differed depending on location. The temperature over the land of Antarctica is lower 

than adjacent to the coast, which agrees with the study of King (1994) and Comiso 

(2000), where they suggested that seasonal distribution depends on the location, 

altitude, and proximity to the ocean. 

The analysis of temperature change in Antarctica found a significant cooling 

trend in the current record period from 2000 to 2019, which is consistent with the 

changes recorded by the Antarctic stations in recent decades. There was marked 

warming during the second half of the 20th century, followed by statistically 

significant cooling in the first decade of the 21s t century (Turner et al., 2016; Oliva 

et al., 2017; Clem et al., 2018). Although the cooling trend was observed, the trend 

analysis is also complicated by the presence of alternating warm and cold 

temperatures in the region around the Antarctica continent. Several studies have 
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shown that some areas had a warming trend while some had a cooling trend 

(Comiso, 2000; Doran et al., 2002; Turner et al., 2005; Chapman and Walsh, 

2007).  

The temperature changes in Antarctica indicate that warm and cold 

temperatures alternate in the sub-region around the Antarctic continent. It was also 

found that temperature remains stable cover in half of the sub-region sampling 

studied, consistent with previous studies that reported temperature trends might  

vary at different locations on the Antarctic continent. Some were warming, others 

cooling, and insignificant changes were also found (Comiso, 2000; Doran et al., 

2002; Turner et al., 2005; Chapman and Walsh, 2007). The study suggests that 

the temperature trend in Antarctica depends on the location studied. 

Moreover, this study found that temperatures decreased on the coast and 

west of Antarctica, while temperatures in the central and east of Antarctica 

remained unchanged. This is consistent with studies that reported no significant  

temperature change in the east of the continent. However, other studies found 

cooling temperature (Bracegirdle et al., 2008; Schneider et al., 2012; Nicolas and 

Bromwich, 2014; Turner et al., 2021). Furthermore, the temperature decreased in 

the west of Antarctica, which is contrary to the result from most studies that found 

an increase in the Antarctic Peninsula and west (Steig et al., 2009; Nicolas and 

Bromwich, 2014; Gonzalez and Fortuny, 2018; Turner et al., 2021). However, most  

of these studies used data from stations that are few and mostly located in the 

peripheral areas of the continent. In addition, the record of station data is longer 

than that of satellite data, which may affect trend analysis. 

In entire Antarctica, our study found a significant cooling trend over the 

current record period from 2000 to 2019, consistent with changes recorded by the 

Antarctic stations. In recent decades, there was marked warming in the second half 

of the 20th century, followed by statistically significant cooling in the first decade of 

the 21s t century (Turner et al., 2016; Oliva et al., 2017; Clem et al., 2018). Although 

a cooling trend was observed, the trend analysis was also complicated by the 

presence of alternating warm and cold temperatures in the region around the 

Antarctic continent. Previous studies of the long-term trend on the Antarctic 

continent indicate that there is no significant temperature change, although some 

studies have found cooling (Comiso, 2000; Doran et al., 2002; Turner et al., 2005; 

Monaghan et al., 2008; Screen and Simmonds, 2012; Nicolas and Bromwich, 2014).  

The study period is also an important issue in temperature analysis of the 

Antarctic continent. Trend analyses show considerable sensitivity in the start and  

end dates (Chapman and Walsh, 2007; Monaghan et al., 2008). The Antarctica 

temperature trends may depend on the season and time of data observations.  

The variability of the surface temperature over the Antarctic continent is 

related to the variability of the Southern Annular Mode (SAM) and tropical forcing 

(Hall and Visbeck, 2002; Thompson and Solomon, 2002; Turner, 2004; Ding et al., 

2011; Ding and Steig, 2013; Clem et al., 2018). The positive polarity of the SAM is 

generally linked to reduced temperature variability across most of the continent. 

CONCLUSION 

The temperature analysis in this study based on the daytime MODIS terra 

daily LST product provided helpful insights into temperature variations in the 

Antarctic region during the first two decades of the 21s t century. 

A similar seasonal pattern was observed among sub-regions. The coldest 

temperature occurred in the middle of the year and the warmest temperature in 

December and January, suggesting that the cooling period lasted much longer than 

the warming period. The cubic spline function has a high potential for extracting the 

seasonal pattern in time series data and the seasonal effects can be adjusted by 

subtracting its fitted values. Moreover, the AR process adjusts for time series 

correlation. 

The trend analyses of the temperature using simple linear and cubic spline 

indicate variation results. The temperature is stable in the sub-regions coving about 
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half of the sampling points, indicating that the temperature remains unchanged 

throughout half of the area in the Antarctic continent, mainly located in East 

Antarctica. The significantly changing areas in the thirty sub-regions were located 

in Antarctic Peninsula, and the East demonstrated a decreasing trend. According to 

the results of the regions, the estimation of long-term variations trend of 

temperature remained stable in four regions while a decreasing trend was observed 

in five regions. Also, the temperature of the Antarctic continent as a whole has a 

decreasing trend. 

The timing and magnitude of the temperature variability in our results may 

add knowledge about climate change. It is hoped that these composite records will 

be beneficial to further studies in Antarctica. The proposed method is beneficial for 

the study of climate change in other areas. 
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