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Abstract This study aimed to identify the contributing sources of PM2.5 in 

Chiang Mai Province during February to April 2016. We therefore investigated 

the chemical compositions of PM2.5 at two different sites. An urban site is in 

Chiang Mai University (CMU) while a rural site is in Mae Chaem (MC) District where 

frequent intensive biomass burning was reported. Thirty pair samples of 24-h 

PM2.5 were analyzed for organic carbon (OC), elemental carbon (EC), levoglucosan 

and stable carbon isotope (δ13C). The mean concentrations (Mean ± SD) of PM2.5, 

OC and EC at the CMU vs MC sites were not significant different (P >0.05) 

including 44.5 ± 32.1 vs 40.5 ± 21.2 µg/m3; 14.9 ± 12.5 vs 14.8 ± 10.0 µg/m3; 

and 1.80 ± 1.60 vs 1.62 ± 0.80 µg/m3, respectively. Levoglucosan concentrations, 

a tracer of biomass burning from both sites were not significant different (P >0.05) 

and the mean ± SD concentrations at CMU vs MC sites were 0.46 ± 0.56 µg/m3 

vs 0.55 ± 0.67 µg/m3, respectively. Meanwhile, the mean values of δ13C in total 

carbon (TC) at CMU vs MC sites were -27.9 ± 0.68 vs -27.6 ± 0.60‰, respectively 

which major data (n = 48, 85.4%) fell within the ranged of C3-type plants and 

minor data (n = 48, 14.6%) in C3-type plants and motor vehicle sources. This 

finding corresponds to the vast biomass burning area from satellite data. Forest 

plants in northern Thailand, Chiang Mai particular are mostly mixed deciduous 

forest i.e. C3-type plants which falling leaves in dry season and easily causing fire. 

The results of this study therefore strongly suggest that the burning of C3-type 

forest plants attribute to airborne PM2.5 pollutants in Chiang Mai Province. 
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INTRODUCTION 

Keywords: Since 2007, air pollution has become a serious problem in upper 

northern Thailand. The major sources of air pollution in this area are mostly from open 

burning of agricultural waste and forest fires from February to April (Pengchai et al., 

2008; Chantara et al., 2012; Chuang et al., 2013; Pani et al., 2019; Punsompong and 

Chantara, 2019). Chiang Mai Province is in the Chiang Mai-Lamphun Basin which is a 

flat plain surrounded by high mountain ranges. Forest area data from the Royal Forest 

Department indicate that forested areas are abundant, consisting of mixed deciduous, 

deciduous dipterocarp, dry evergreen, and hill evergreen forests. The geographical 

feature of high mountains surrounding a large valley basin often results in limited 

ventilation and dispersion of air pollution. Biomass burning (BB) can either occur 

naturally or from human activity. Open burning of forest fires and grassland, 

agriculture residue and residential combustion of biofuel for cooking is a significant 

contributor to trace gases and particulate matter (PM) in the troposphere (Chang  

et al., 2015). In this area, high number of hotspots were reported and the dominant 

sources of PM2.5 were contributed from the biomass burning especially in dry season. 

According to a previous study in Chiang Mai, the primary sources of air pollution in 

this area indicated biomass burning emissions (agricultural and forest fires), as well 

as transportation emissions (Pongpiachan, Pongnailert, Ho, & Cao, 2014; Janta et al., 

2019; ChooChuay et al., 2020) 

In Southeast Asia, the main source of biomass burning includes forest fires and 

burning of agricultural waste products (Yadav et al., 2017). A previous study found 

that large amounts of fine PM or PM2.5 (particulate matter with an aerodynamic 

diameter less than 2.5 µm) in Chiang Mai were emitted from biomass burning, with an 

average ambient PM2.5 concentration of 45.5 ± 8.8 μg/m3 (Chuang et al., 2013).  

The daily average values of PM2.5 in ambient air in Chiang Mai Province have exceeded 

Thailand’s national ambient air quality standard of 50 μg/m3 during 2014 - 2016. 

Khamkaew et al., (2016) reported that the mean PM2.5 concentrations collected at 

Chiang Mai University (CMU) between March and April 2014 were largely attributed to 

local open burning of agricultural matter and forest fires (Khamkaew et al., 2016).  

Air pollution in Chiang Mai City studied in the dry season of 2010 suggested that open 

burning of plants was the predominant contributor to air pollution in this area and was 

found to be highly correlated with element concentrations in ambient PM10 (particulate 

matter with an aerodynamic diameter less than 10 µm) and the combustion of teak, 

yangna, and corn stalks (Kiatwattanacharoen et al., 2017). Mae Chaem (MC) is a rural 

district in Chiang Mai Province and the terrain consists of mostly foothills and mountain 

ridges surrounding a small basin approximately 350 m above mean sea level. MC has 

had the highest number of hotspots and smoke haze pollution during the dry season 

for more than a decade (Arunrat et al., 2018).  

Prapamontol and colleagues reported that in February to March in 2012, the 

maximum ambient 24-hour average PM10 in MC was 191.5 µg/m3, about 1.5 times 

higher than the standard PM10, 24-h average, in Thailand (120 µg/m3). Moreover,  

particles of PM2.5 often contain a variety of chemical species, organic carbon (OC) and 

elemental carbon (EC) and numbers of studies regarding the chemical characterization 

of fine particles were carried out in the southern part of Thailand such as in Hat Yai 

city (Pongpiachan, 2014; Pongpiachan, Pongnailert, Ho, & Cao, 2014). Carbonaceous 

particles emitted from biomass burning can be categorized into elemental carbon (EC) 

and organic carbon (OC) based on their thermal, chemical, and optical properties 

(Nunes and Pio, 1993; Saarikoski et al., 2008). In general, EC is released from primary 

combustion, emitting directly from incomplete combustion of fossil combustion (coal, 

fuel oil and petrol) and biomass burning, agricultural residue, and forest fire (Schwarz 

et al., 2008). EC is referred to as black carbon (BC) aerosol, and arises from incomplete 

combustion of biomass, motor vehicle fuel and residential coal (Watson, 2002). Thus, 

EC is frequently used as a primary tracer element due to its inert physiochemical 

properties in the atmosphere. In contrast, OC is the result of secondary combustion 

and is comprised of a complex mixture of many compounds including primary source 

emissions (biogenic source, biomass burning, traffic, cooking and industry) and 
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secondary organic carbon (SOC) which is formed by the atmospheric oxidation of 

gaseous precursors. OC usually consists of a mixture of many organic compounds, 

such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-d-dioxin 

and dibenzofuran (PCDD/F), which have mutagenic and/or carcinogenic characteristics 

(Feng et al., 2009; Kanakidou et al., 2012). Levoglucosan (1,6-anhydro-β-D-

glucopyranose) is a tracer of biomass burning and one of the most studied sugar 

compounds produced by thermal decomposition of cellulose and hemicellulose. It is 

emitted during the combustion of biomass such as that used in residential heating and 

wild/agriculture fires and has been a useful molecular marker of biomass (Simoneit et 

al., 1999; Křůmal et al., 2015). Recent studies (Hennigan  

et al., 2010; Hu et al., 2013; Zhao et al., 2014) have suggested that levoglucosan is 

prone to degradation by OH radicals in the atmosphere. Thus, its concentration during 

long-range transport may be underestimated, especially in summer (Fraser and 

Lakshmanan, 2000; Simoneit, 2002; Simoneit et al., 2004, 1999). Detailed 

characterization of the proportional yield of levoglucosan to its isomers and particularly 

to mannosan in fuel source emissions has further permitted discrimination by specific 

types of fuel combustion (Ward et al., 2006). In addition, studies of stable carbon 

isotopes in atmospheric particulate matter are potentially useful for identifying sources 

of carbonaceous particles and this approach may be a useful new tool for studies of 

air pollution composition (Wang et al., 2013; Mkoma et al., 2014; Bikkina et al., 2016). 

Stable carbon isotopes (δ13C) measurement values can be used to trace carbon 

sources in atmospheric studies by taking advantage of the different stable carbon 

isotope ratios of C4- and C3- type plants (Kawashima and Haneishi, 2012; Cao et al., 

2017). Due to their different photosynthetic pathways, C4-type plants, such as corn 

and warm-climate grasses, are enriched in stable carbon isotopes compared to C3-type 

plants, which include most other plants, trees, and cool-climate grasses (DeNiro and 

Epstein, 1978). Kawashima and Haneishi (2012) employed stable carbon isotopes 

(δ13C) measurement to study aerosol carbon from various sources such as gasoline 

and diesel vehicle exhaust, fireplace soot, open biomass burning emissions, street 

dust, soils, charcoal, and coal. They found that δ13C values of fuel combustion ranged 

from −20.6‰ to −20.5‰, whereas, the values obtained from C3-type plants  

(-34.7‰ to -28.0‰) were lighter than obtained from C4-type plants (-19.3‰ to -

16.1‰) (Kawashima and Haneishi, 2012).  

This study aimed to identify the contributing sources of airborne particulate 

matter with an aerodynamic diameter less than 2.5 µm (PM2.5) in Chiang Mai Province 

where severe smoke-haze pollution occurred almost every dry season (February to 

April). So, we determined chemical compositions including carbonaceous carbons  

(EC and OC), levoglucosan and stable carbon isotopes in ambient PM2.5 samples 

collected from urban and rural sites in Chiang Mai Province during February to August 

2016. The chemical compositions were then used to characterize and identify sources 

contributing to ambient PM2.5 in Chiang Mai Province. 

MATERIALS AND METHODS 

Sampling sits and sample collection 

The study had two sampling sites located in Chiang Mai Province as shown in 

Figure 1. The first sampling site was in urban area located on the rooftop of the four–

story building at the Research Institute for Health Science (RIHES), Chiang Mai 

University (called CMU site; 18°47ꞌ43.63ꞌꞌN, 98°57ꞌ28.17ꞌꞌE, 331 m mean sea level; 

MSL). The second sampling site was a rural area located in Mae Chaem District, where 

PM2.5 was collected at the Debaratana Vejjanukula Hospital (MC site; 18°29'52.94"N, 

98°22'45.38"E 535 m MSL). PM2.5 samples were collected from February to August 

2016 using MiniVol air samplers (Air metric, USA) with a flow rate of 5 L/min. PM2.5 

samples were collected for 24 hours starting at 9.00 a.m., on quartz fiber filters 

(Whatman’s, UK, Ø 47 mm). The filters were stored in desiccators filled with silica gel 

before and after sampling for 24 hours prior to being weighed using a 5-place 

microbalance (Mettler Toledo, AB135-S/FACT, Switzerland). Each filter was weighed 

three times in a controlled room (25 ± 2°C and 40 ± 5% RH). The collected filters 



Chiang Mai University Journal of Natural Sciences: https://cmuj.cmu.ac.th 4 

 

CMUJ. Nat. Sci. 2021. 20(4): e2021088 

were covered with aluminum foil to protect the samples from sunlight and kept in a -

20 °C freezer until analysis.  

Figure 1. The location of CMU and MC sites. 

Carbonaceous aerosol analysis 
The concentration of OC and EC on PM2.5 samples were analyzed using a thermal 

optical transitions OC/EC analyzer (Sunset Laboratory, Model - 4, USA) using the 

thermal-optical transmittance (TOT) method and applying the NIOSH (National 

Institute for Occupational Safety and Health) 5040 protocol, with improvements from 

Chow et. al., 2007 (Chow et al., 2007) at Yale-NUIST Center on Atmospheric 

Environment, Nanjing University of Information Science and Technology (NUIST), 

Nanjing, China. Briefly, an aliquot of quartz filter disks with a 17 mm diameter were 

packed in a quartz tube inside the thermal desorption chamber. The pyrolysis products 

were converted to carbon dioxide (CO2) by a redox reaction with manganese dioxide. 

The CO2 was quantified using a self-contained nondispersive infrared (NDIR) system. 

At the end of each analysis, a fixed volume of an internal standard containing 5% 

methane and 95% helium was injected and thus a known carbon mass could be 

derived. An external sucrose standard (4.2 μg/L) calibration was conducted every 

week to insure repeatable quantification. Calibration with an instrument blank was 

conducted every day. Both detection limits for OC and EC of the instrument was  

0.5 μg/m3. A duplicate was run to test for analytical errors in the precision of the 

measurement. The results showed good reproducibility (reported as percentage 

relative standard deviation; % RSD), from duplicate analysis of the filter samples at 

less than 8% for OC and 15% for EC. The sample results were corrected by blank 

values. 

Levoglucosan analysis 
Levoglucosan analysis was performed at the Yale-NUIST Center. A filter samples 

punch 17 mm in diameter was placed in a high-density polyethylene (HDPE) bottle 

with 3 mL of deionized water and sonicated (PS-D40, China) for 30 minutes at 

controlled temperature (~10 ºC). Using ice to extract the target compounds, the filter 

was removed and the extract was then filtered through a 0.22 μm polyether sulfone 
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(PES) and the aqueous filtrate was characterized by a modified IC method based on 

Hsieh et al., (2008) and Tsai et al., (2010). The IC (DX-5000+, Dionex) was equipped 

with pulsed amperometry detection (PAD). The gradient pump (Model GP 5000, a 

spectra system automated sampler (AS 5000) with 5 mL vials, used a CarboPac MA1 

analytical column (250 mm × 4 mm I.D.), and sodium hydroxide solution (480 mM, 

0.4 mL/min) as eluent. 

Stable carbon isotope analysis 
The stable carbon isotopes in PM2.5 were determined using an elemental analyzer 

(EA) coupled with an isotope ratio mass spectrometer (IRMS, Finnigan MAT Delta Plus) 

at the Yale-NUIST Center on Atmospheric Environment, (Jung and Kawamura, 2011). 

A filter disk of 14 mm diameter was packed in a tin cup, loaded into the EA by an auto-

sampler and then oxidized by chromium (III) oxide at 1020°C. The resulting CO2 was 

purified by an online GC column equipped in the EA and then measured with a thermal 

conductivity detector. A small aliquot of CO2 gas was introduced to the IRMS through 

an interface ConFlo II (Thermo Quest), the carbon isotopic composition was expressed 

as δ13C, which is relative to the Pee Dee Belemnite (PDB). External calibration was 

conducted using five known amounts (ranging from 0.2 to 0.6 mg) of acetanilide 

(Thermo Scientific, USA) with known δ13C of TC (-27.26‰.). The analytical errors of 

δ13C based on the duplicate analyses were less than 0.06 ‰. TC concentrations 

measured with EA agree well (P <0.01). The δ13C value in a sample was expressed on 

a per mill (‰, that is, parts per thousand) basis. The isotope ratio of a sample (Rsample) 

was compared with a standard (Rstandard) as follows: 

δ13C (‰) = (Rsample/ Rstandard – 1) x 1,000    (1)   

where R is 13C/12C. Pee Dee Belemnite (PDB) was used as the standard. 

Data Analysis  
All data from this study were analyzed using the SPSS statistical program. The 

average value was expressed as Mean ± Standard deviation (SD). T-tests were used 

for comparisons of pollutants between the two sites and correlation coefficients (r) 

were calculated. Linear regression analysis was performed in identifying the 

associations of parameters. The Moderate Resolution Imaging Spectroradiometer 

(MODIS) on board NASA’s Aqua and Terra satellites were used to calculate the number 

of hotspots during the intensive biomass burning season. 

Backward Trajectories Analysis 

Three-day back trajectories in samples from the CMU and MC study sites were 

calculated using the National Oceanic and Atmospheric Administration’s Hybrid Single 

Particle Lagrangian Integrated Trajectory (HYSPLIT) model version 4 (Draxler & Hess, 

1998). Backward trajectories were calculated every day from February to May 2016 

starting at 00, 06, 12, and 18 UTC at altitudes 100 m above ground level (AGL) and 
only one at which the air arrives at the sites. The selection of 100 m arriving height as 

the lowest level resulted from the orography around the sites which is surrounded by 

mountain and forest. The clustered to the characterized distribution of fire directions 

and orientation arriving at the sampling receptors.   

RESULTS  

General results of PM2.5, OC, and EC 
The average concentrations of PM2.5 at the CMU and MC sites were  

44.5 ± 32.1 µg/m3 and 40.3 ± 21.2 µg/m3, respectively, which were not significantly 

different (P >0.05). The highest number of hotspots, 120, was observed on April 18, 

coinciding with the highest concentration of PM2.5 at the CMU site, 129.3 µg/m3. These 
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high concentrations were well in accord with the number of hotspots detected in Chiang 

Mai Province in March and April 2016. Meanwhile PM2.5 level was relatively low at MC 

site at the same day. There are several reasons toward this phenomenon. Chiang Mai 

Province locates in upper northern part of Thailand and composes of 9 provinces (about 

102,259 Square km in total) and mountainous topography. CMU site was designed as 

a representative Chiang Mai City area which locates in Chiang Mai - Lamphun Basin 

(large basin approximate ranged 174 km long) while MC site locates in Mae Chaem 

Basin (approximate ranged 7 km long and about 120 km south-west direction of 

Chiang Mai City. Moreover, the frequency of biomass burning was also different. 

Besides forest fire, it is common practices of getting rid of garbage in the rural 

community i.e. MC site. Furthermore, there are few more reasons for the difference of 

PM2.5 levels such as the meteorological parameters i.e. wind direction, wind speed, 

rain fall etc. In addition, the dominant of wind direction from southwest direction which 

passed through the MC site. This phenomenon might disperse PM2.5 as well as other 

pollutants away. The 24-hour average concentrations of OC in PM2.5 at the CMU and 

MC sites during the sampling period were 14.6 and 14.3 µg/m3, respectively. 

Meanwhile, the average concentrations of EC at the CMU and MC sites were 1.8 and 

1.7 µg/m3, respectively (Table 1).  

 

Table 1. The concentrations of PM2.5, OC, EC, TC, levoglucosan, stable carbon isotope and 

the ratio of OC/EC, levoglucosan/OC at CMU and MC sites. 

Parameter 
CMU site MC site 

P value 
Min. Max. Mean S.D. Min. Max. Mean S.D. 

Concentrations (µg/m3)          

PM2.5 7.80 129.30 44.50 32.10 11.90 83.70 40.30 21.20 0.557 

OC 0.50 46.10 14.60 11.90 0.84 43.0 14.30 10.20 0.964 

EC 0.15 6.81 1.80 1.61 0.33 3.60 1.66 0.76 0.774 

TC 0.50 52.9 15.80 13.30 0.84 46.70 15.30 11.20 0.073 

Levoglucosan 0.02 2.35 0.46 0.56 0.12 2.34 0.55 0.67 0.565 

δ13C (‰) -29.30 -26.40 -27.90 0.67 -28.80 -25.80 -27.60 0.60 0.067 

OC/EC ratio 6.77 34.00 15.80 8.01 8.26 27.70 13.50 5.22 0.995 

Levoglucosan/OC (%) 0.29 6.37 2.67 1.59 0.16 9.02 3.15 2.26 0.304 

 

 

In addition, the moderate correlations coefficient (r) between TC and PM2.5 mass 

concentrations of 0.67 and 0.57 (P <0.001) were observed at the CMU and MC sites, 

respectively, suggesting TC and PM2.5 have similar sources and formation processes, 

allowing researchers to predict that the TC and PM2.5 possibly originated from same 

biomass-type burning which came from local emission and transportation sources. 

Moreover, OC was significantly correlated with levoglucosan (Figure 3.) suggesting 

that biomass burning emissions contributed to carbonaceous aerosols (Cao, Zhang, 

Kawamura, & Zhang, 2016). The average values of OC/EC ratios were 15.8 at the CMU 

and 13.5 at the MC sites, indicating that biomass burning was the likely source of 

carbonaceous species. Previous studies have shown that high OC/EC ratios were 

related to biomass burning, with a ratio of OC/EC 14.5 for forest fires (Watson, Chow, 

& Houck, 2001) and 15.7 for rice straw burning (Engling, Lee, Sie, Wu, & I, 2013). 

The values of the OC/EC ratio for fossil fuel combustion, mainly vehicular emission was 

2.9 ± 0.5 (Safai, Raju, Rao, & Pandithurai, 2014), 1.88 ± 0.24 (Panda et al., 2016) 

and 0.71 (Saarikoski et al., 2008). A significant correlation coefficients found between 

OC and EC for the whole period for the CMU and MC sites were 0.876 and 0.832  

(P <0.001), and this finding suggested that a large fraction of OC and EC was emitted 

from the same biomass sources in atmospheric PM2.5 (B. Huang et al., 2013; Qi et al., 

2018). More specifically, we employed the stable carbon isotopes to clarify emission 

sources of PM2.5. Range for δ13C were -29.3 to -26.4‰ and -28.8 to -25.8‰ at CMU 
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and MC, respectively. The mean value of δ13C was -27.9 ± 0.67‰ at CMU and  

-27.6 ± 0.60‰ at MC, indicating dominant contribution from combustion of C3 plants 

such as rice residues, teak, and grass. It confirmed that the sources of aerosol PM2.5 

were more influenced by forest fire burning and agricultural residues. C4 plants burning 

such as wheat straw as shown in secondary emission sources. C4 plants such as corn 

and warm - climate grasses, are enriched in stable carbon isotopes compared to C3 

plants, which include most other plants, trees, and cool-climate grasses. These results 

were similar to previous study, Cao et al., 2016 have been reported the average δ13C 

value (−26.2‰) from biomass burning aerosols in Northeast China was dominant 

contribution from combustion of C3 plants. Additionally, the PM ranges for δ13C values 

from biomass components burning showed sources differed signally. For C3 plants 

burning source, δ13C ranged from −34.7 to −25.4 ‰ whereas for C4 plants ranged 

from −22.2 to −13.0‰ (Aguilera & Whigham, 2018). For C3 plants burning source, 

δ13C ranged from −34.7 to −25.4 ‰ whereas for C4 plants ranged from −22.2 to 

−13.0‰ (Aguilera & Whigham, 2018). 

 

Identification of biomass burning episodes  

Temporal variation of levoglucosan  

The average concentrations of levoglucosan observed at the CMU site was  

0.46 ± 0.56 µg/m3, while the concentrations of levoglucosan at the MC site were  

0.55 ± 0.67 µg/m3, with no significant difference (P <0.05) between two sites. The 

levoglucosan concentrations peaked at the CMU site on 25 March at 0.23 µg/m3, while 

the peak at the MC site was 0.23 µg/m3 on 18 April (Figure 2.). 

 

Figure 2. Daily variation in PM2.5 and levoglucosan concentrations during the 

sampling period at the CMU and MC sites. 

Based on results from previous studies, it is likely that open burning of 

agricultural biomass and forest fires were the primary sources of biomass derived 

particles in our study (Liu et al., 2013; Maenhaut et al., 2016; Thepnuan et al., 2019). 

Levoglucosan concentration as a specific marker of biomass burning because 

levoglucosan is the degradation product from cellulose part in some biomass 

(Klejnowski, Janoszka, & Czaplicka, 2017; Bhattarai et al., 2019; Janoszka, Czaplicka, 

& Klejnowski, 2020). There is no critical level or range of levoglucosan concentration 

for proving that the particles were from biomass burning but whatever the level of 
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levoglucosan detected it will indicate the biomass-burning source. The average 

levoglucosan concentrations from CMU and MC sites were 0.46 ± 0.56 and  

0.55 ± 0.67 µg/m3, respectively which higher than the report from a rural mountaintop 

in East China, (Liu et al., 2013) with an average level of 0.064 µg/m3 and ranged from 

0.0028 to 0.11 µg/m3. Meanwhile, the values from our study were lower than those 

observed at a Chiang Mai City site with an average 1.22 ± .75 µg/m3 and 1.13 µg/m3 

(Khamkaew et al., 2016; Thepnuan, Chantara, Lee, Lin, & Tsai, 2019). The variability 

of levoglucosan levels depending on such biomass containing cellulose component.  

A moderate correlation between levoglucosan concentrations and PM2.5 was found in 

the CMU site (0.654) but rather low at MC site (0.494) (Figure 3.), suggesting the 

source of air pollution at both study sites was from open biomass burning during this 

study period. 

 

Figure 3. Correlation between PM2.5, OC, and levoglucosan at the CMU and 

MC sites. 

This Figure 3. shows concentrations of levoglucosan, a tracer of biomass 

burning, associated with PM2.5 with the r of 0.6542 and 0.4948 in CMU and MC sites, 

respectively. Meanwhile, OC has association with PM2.5 with the r of 0.63 and 0.70, 

respectively. These two graphs show that OC and levoglucosan attribute to PM2.5 in 

CMU site greater than in the MC site. Interestingly, the backward trajectory indicated 

that the air mass arrived from southern and southwest of CMU where MC site is in 

that direction. Though MC has been the intensive area of biomass burning, other 

meteorological and topographical factors might impact on aerosol plume. To our best 

knowledge, this study will be the first of its kind from rural area of biomass burning 

site. Table 1 shows the ratio of OC to levoglucosan, and the mean levoglucosan/OC 

ratio at the CMU and MC sites were 2.7% and 3.2%, respectively which was similar 

with previous studies suggesting biomass burning as the source (Sullivan et al., 2008; 

Ho et al., 2014; Zhang et al., 2014). 
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Evidence from hotspot maps and trajectory  
For the biomass burning season period from February to May 2016 shown in 

Figure 4. , the HYSPLIT model was used to calculate three-day backward trajectories 

to evaluate potential sources of air mass flows arriving at CMU and MC. The CMU site 

is at the altitude of 100 m above ground level (00, 06, 12 and 18 UTM; start time), 

the data were classified in to 3 clusters. In February, the air masses arrived mainly 

from the southern direction (56.9%) passing from lower northern Thailand, while the 

dominant air masses were transported from the southwestern direction in March 

(49.2%) and April (43.3%). The air mass from the south-west passes through 

southern Myanmar and some parts of Thailand (Mae Hong Son Province and south-

west districts of Chiang Mai Province). In these regions, there was high numbers of 

fire hotspots during the study period. In May, the bulk of air masses arrived at the 

study locations from the south-west of Thailand and travelled over the Andaman Sea 

(60.5%). At the MC site, the direction of air mass flows was largely similar as that 

found at the CMU site. The primary direction was from south and southwest Myanmar, 

with higher contribution to overall airflow in February, March, and April at 56.9%, 

50.0% and 43.3%, respectively. The result of air mass movement in May was again 

like the CMU site, the mainly of air masses in these cluster originated from the 

Andaman Sea was observed for 6 days (in accounts for 47.6% of total). The dominant 

air masses at CMU and MC sites originated from southern Myanmar and the south of 

Mae Hong Son Province. The major direction of the air masses at both sites passed 

through southern Myanmar and the parts of Mae Hong Son. In this region, there was 

high distribution of fire hotspots during the study period as also shown in previously 

reports (Khamkaew et al., 2016; Kiatwattanacharoen et al., 2017; Punsompong and 

Chantara, 2019). 

Figure 4. The number of hotspots were obtained from NASA and cluster 

analysis of three-day BWT arriving at 100 m AGL at both sites. 

Major source of biomass type from stable isotope data  

The results from the δ13C measurements of the PM2.5 samples are shown in 

Figure 5. The variation in δ13C values of TC aerosol from the CMU vs MC sites ranged 

between -29.3‰ to -26.4‰ vs -28.8‰ to -25.8‰ with a mean of -27.9 ± 0.7‰ 

vs -27.6 ± 0.6‰, respectively. Our mean values were similar to the values reported 

for the plant leaf samples from Thailand in 2006 whose mean values in the wet and 

dry seasons were -29.2‰ and -28.6‰, respectively (Yoneyama et al., 2010). 

Furthermore, the δ13C values of C3-type plants ranged from -30.6‰ to 24.4‰, while 

February 

2016 
March 2016 

April 2016 May 2016 
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the C4-type plants ranged from -19.3‰ to 11.6‰ (Table. 2) Therefore, the δ13C 

values from both CMU and MC sites indicated the burning of C3-type plants. 

 

Figure 5.  Data plots for δ13C of TC from CMU and MC sites based on typical 

value thresholds from various sources such as combustion/emissions from 

C3- and C4-type plants (Turekian et al., 1998; Lü et al., 2000; Yoneyama et al., 

2006; Girard et al., 2011; Kawashima and Haneishi, 2012) and motor vehicle 

emissions (Widory and Javoy, 2003; Widory et al., 2004; López-Veneroni, 2009; 

Kawashima and Haneishi, 2012) 

 

Table 2. The values of stable carbon isotope in the present study and those reported in the 

literature. 

Plants Species δ13C (‰) Location Reference 

C4 – type plants Corn -16.1 Japan Kawashima and 
Haneishi, 2012 

 Corn -13.5 to -11.6 Canada Girard et al., 2011 
 Grass -19.3 Japan Kawashima and 

Haneishi, 2012 
 Saccharum  -12.9 South Africa Turekian et al., 1998 
 Saccharum officinarum  -12.1 Thailand and 

Philippines 
Yoneyama et al., 2010 

 Zea mays -15.1 China Lü et al., 2000 

C3 – type plants Rice plant -28.5 Japan Kawashima and 
Haneishi, 2012 

 Dry leaves -29.4 Japan Kawashima and 
Haneishi, 2012 

 Mopane (Genus; 
Colospherum)  

-24.4 South Africa Turekian et al., 1998 

 Phyllostachy arcana  -24.8 China Lü et al. 2000 
 Bamboo Indocalamus 

latifolius 
-25.6 China Lü et al., 2000 

 Hay  -29.7 to -27.5 Canada Kawashima and 
Haneishi, 2012 

 Soybean -30.6 to -27.7 Canada Kawashima and 
Haneishi, 2012 

 Dipterocarpus alatus  −28.6 ± 0.4 Thailand and 
Philippines 

Yoneyama et al., 2010 

 Tectona grandis −29.6 ± 0.2 Thailand and 
Philippines 

Yoneyama et al., 2010 

 Gigantocha 
hasskariana  

−29.9 ± 0.3 Thailand and 
Philippines 

Yoneyama et al., 2010 

C3 – type plants Mix deciduous forest  −27.9 ± 0.7 CMU, Thailand This study 
 Mix deciduous forest −29.6 ± 0.6 MC, Thailand This study  
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Table 3. Estimated total burned area in Chiang Mai Province, Thailand (hectares). 

Year Forest area Agriculture area 

2015 395,339.8 (90.9%) 39,735.7 (9.1%) 

2016 200,974.6 (97.8%) 4,434.1 (2.2%) 

 

DISCUSSION 

Our studies suggested the sources of PM2.5 in two different sites at Chiang Mai 

Provinces from February to September 2016 intensive biomass burning period. The 

chemical composition in airborne PM2.5 were analyzed including levoglucosan, OC, EC, 

and stable carbon isotope. 

Levoglucosan is a specific biomarker of biomass burning marker and derived from 

cellulose burning (Rushdi et al., 2017; Simpson, Dills, Katz, & Kalman, 2004). The 

average concentrations of levoglucosan from this study in both sites was significantly 

higher than the reported value in the Kathmandu Valley, the capital region of Nepal 

(0.788 ± 0.685 µg/m3, Xin et.al, 2018) (Xin et al., 2018) and higher than the 

concentrations of levoglucosan at CMU, Chiang Mai Province, Thailand were 1.13 

µg/m3 (Khamkaew et al., 2016). Open burning from forest fire and agricultural were 

predominant sources of biomass burning in this study. In the present study, the ratio 

of OC/EC ratio in CMU and MC sites also analyzed. We found that the highest of OC/EC 

ratios is mostly indicates the PM2.5 samples were derived from biomass burning (Zhang 

et al., 2007). However, the lower ratios of OC/EC were reported in the literature for 

vehicle fuel formulations in many studies at Beijing, Langfang, and Tianjin (Qi et al., 

2018), Wanzhou (Huang, Zhang, Li, Chen, & Yang, 2020), Beijing-Tianjin-Hebei  

(Ji et al., 2019). Several studies have reported OC/EC ratio for various emission 

sources which include vehicular exhaust. In addition, we have also use stable carbon 

isotopic to provide information about the sources of PM2.5 and cold be applied in various 

type of environment studied to identify emission sources in the first time of this area 

(CMU and MC sites). This finding corresponds to the vast biomass burning area from 

satellite data (Table 3). The mean value of stable carbon isotope in these studies was 

suggest that the PM2.5 samples were contribution from C3 plants combustion were 

similar to the value reported at Doi Ang Kang, Thailand in 2018 during 1 March to 13 

April, 2015 intensive biomass burning period (Boreddy, Parvin, Kawamura, Zhu, & Lee, 

2018).  

However, this study has some limitation represent weakness within a small 

number of PM2.5 samples. There were difficult to find significant relationships from the 

data such as the correlation between the concentrations of PM2.5 and chemical 

composition. Including the statistical tests normally require a larger sample size to 

ensure a representative distribution of the samples size to be considered 

representative of studies area. The authors recommendation the importance of sample 

size should be greater in quantitative and qualitative studies. 

CONCLUSION 

In the present study, the chemical composition, and characteristics of PM2.5 were 

investigated at two different sites (CMU and MC) in Chiang Mai Province to identify the 

contributing sources of airborne PM2.5 in Chiang Mai Province. High concentrations of 

PM2.5 were found at both the CMU and MC sites which corresponded with large numbers 

of hotspots to the southwest and west of the study sites during the study period. The 

mean values of δ13C in total carbon (TC) from PM2.5 at CMU and MC sites suggest C3-

type plants’ burning sources according to major data (n = 48, 85.4%) fell within the 

range of C3-type plants and minor data (n = 48, 14.6%) in C3-type plants and motor 

vehicle sources. Forest plants in northern Thailand, Chiang Mai particular are mostly 

mixed deciduous forest i.e. C3-type plants which falling leaves in dry season and easily 

causing fire. The results of this study therefore strongly suggest that the burning of 

C3-type forest plants attribute to airborne PM2.5 pollutants in Chiang Mai Province. As 
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this study result, control of forest burning on local and regional scales should be 

seriously considered by the national and local government in reduction of airborne 

PM2.5 in Chiang Mai Province. 
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