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ABSTRACT
Succinic acid as a bio-based green and versatile catalyst has been 

employed for one-pot facile three-component Biginelli synthesis of 3,4-
dihydropyrimidin-2-(1H)-ones/thiones derivatives under solvent-free condi-
tions with high to excellent yields and short reaction times. This sustainable 
procedure has notable benefits such as easy-to-handle, green, low-cost and 
non-toxic catalyst, materials available, simple work-up with no necessity of 
chromatographic purification steps, one-pot and solvent-free conditions. The 
products have been characterized by melting points and 1H NMR spectroscopy. 

Keywords: Succinic acid, 3,4-dihydropyrimidin-2-(1H)-ones/thiones deriv-
atives, Sustainable procedure, Biginelli condensation reaction, Solvent-free 
conditions.

INTRODUCTION
Succinic acid (C4-dicarboxylic acid) (Figure 1) is a common metabolite 

in plants, animals and microorganisms and has been used widely in agricultural, 
food and pharmaceutical industries (Zeikus et al., 1999). This acid has holds 
good industrial applications and is used in industries such as, resins, polymer, 
paints, cosmetics and inks, etc (Vermuri et al., 2002). To date, the economically 
renewable resources used in succinic acid production reported are cheese whey 
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(Samuelov., 1999; Lee et al., 2000; Lee et al., 2003a; Wan et al., 2008), cane 
molasses (Agarwal., 2006; Liu et al., 2008), Jerusalem artichoke (Zheng et al., 
2010), wheat flour (Du et al., 2008), wood hydrolysate (Lee., 2003b; Kim et al., 
2004; Hodge et al., 2009) and corn straw hydrolysate (Zheng et al., 2009).

O

O

HO

OH

Figure 1. Structure of succinic acid.

One of the dominating factors in recent organic synthetic routs is green 
chemistry. Atom economy, reduction in byproduct, number of steps in organic 
synthesis, energy cost, produced waste, use of non-hazardous reagents in catalytic
protocols are one of the most important goals of green chemistry. Furthermore, 
organic reactions under solvent-free conditions for green and clean synthesis 
of organic compounds have attracted much interest in organic chemists. And
herein, our recent studies focused on developing of green catalyst 
(Mohamadpour, 2018a; Mohamadpour et al., 2018b; Mohamadpour et al., 2018c)
in multi-component reactions (Mohamadpour et al., 2016; Mohamadpour et al.,
2017; Lashkari et al., 2018).

Pyrimidinone derivatives are a common structural motif in variety of 
natural and non-natural products. Their derivatives have been known to exhibit 
a wide range of pharmacological and biological properties. For example these 
heterocyclic compounds have been used as calcium channel blockers, α-1a-
antagonists (Prakash et al., 2008), mitotic kinesin Eg5 inhibition (Kapoor et al., 
2000), anti cancer (Mal3-101) (Wisen et al., 2008), anti HIV agent (Heys et al., 
2000), antibacterial and antifungal (Ashok et al., 2007), antiviral (Hurst et al., 
1961), antioxidative (Magerramow et al., 2006). The representatives such as 
batzelladines, ptilomycalines and crambescidines exhibit many biological 
activities such as anticancer, antifungal, anti HIV etc (Bewley et al., 2004).

Recently, numerous protocols for the preparation of these compounds 
that is including various catalysts have been reported calcium fluoride (Chitra 
et al., 2009), copper(II)sulfamate (Liu et al., 2009), baker's yeast (Kumar et al., 
2007), hydrotalcite (Lal et al., 2012), hexaaquaaluminium (III) tetrafluoroborate 
(Litvic et al., 2010), TBAB (Ahmad et al., 2009), copper (II) tetrafluoroborate 
(Kamal et al., 2007), Copper (II) acetate (Khodja et al., 2014), [Btto][p-TSA] 
(Zhang et al., 2015), triethylammonium acetate (Attri et al., 2017), p-dodecyl-
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benzenesulfonic acid (Aswin et al., 2014) and TMSPTPOSA (Rao Jetti et al., 
2017). Some of the limitations of these methodologies are low yields, toxic 
organic solvents and catalyst, harsh reaction conditions and expensive materials. 
Based on the above considerations and in continuation of our efforts to develop
green methodologies, we reported herein succinic acid as a bio-based green 
catalytic system for the synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones/
thiones derivatives via three-component Biginelli (Biginelli et al., 1893) reaction 
between β-keto esters, aldehyde derivatives and urea/thiourea under thermal 
and solvent-free conditions with high to excellent yields and short reaction 
times (Figure 1). One of the source of environmental pollutions is the usage of 
organic solvents under reflux conditions and the need for column chromatog-
raphy to purity the products. In this present work, the products were obtained 
through simple filtering with no need column chromatographic separation. The 
advantages of succinic acid as a bio-based, mild and green acidic catalyst in 
organic synthesis are eco-safe, highly efficient, easily to handle, and inexpensive. 

(X)  2a= O; 2b= S

(R) 3a= Et; 3b= Me

(Ar)1a,=Ph; 1b, 1c= 4-OH-C6H4; 1d, 1e= 2-Cl-C6H4; 1f= 4-Me-C6H4; 1g, 1h= 4-NO2-C6H4; 1i, 1j= 4-MeO-C6H4; 1k= 4-
Cl-C6H4; 1l= 3-MeO-C6H4; 1m= 4-F-C6H4; 1n= N,N-di Me-C6H3; 1o= 4-F-C6H4; 1p= 3-MeO-C6H4; 1q= Ph
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Figure1. Synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones/thiones derivatives.



 CMU J. Nat. Sci. (2019) Vol. 18(4)                           518

MATERIALS AND METHODS

General
Melting points all compounds were determined using an Electro thermal 

9100 apparatus. 1H NMR spectra were recorded on a Bruker DRX-400 Avance 
instruments with DMSO-d6 as solvents. All reagents and solvents were purchased 
from Merck, Fluka and Acros chemical companies were used without further 
purification.

General procedure for preparation of 3, 4-dihydropyrimidin-2-
(1H)-ones/thiones derivatives (4a- q). A mixture of aldehyde derivatives (1, 
1.0 mmol) and urea/thiourea (2, 1.5 mmol), ethyl/methyl acetoacetate (3, 1.0 
mmol) was heated under solvent-free conditions at 70 °C for appropriate time in 
the presence of succinic aicd (20 mol %). After completion of the reaction (by 
thin layer chromatography TLC) the mixture was cooled to rt and cold water 
was added and the precipitated was separated with filtration and recrystallized 
from ethanol to afford the pure products (4a- q). Spectra data of products are 
represented below:

5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4a)
Crystalline solid; Yield: 91%; M.p. 199-200 °C; 1H NMR (400 MHz, DMSO-d6): 
1.10 (3H , t, J= 7.2 Hz, CH3CH2), 2.26 (3H, s, CH3), 3.99 (2H, q, J=7.2 Hz, 
CH2O), 5.15 ( 1H, s, CHN), 7.26 ( 3H, d, J= 7.2 Hz, ArH), 7.33 (2H, t, J=7.2 Hz, 
ArH), 7.76 and 9.21 (2H, 2s, 2NH).

5-Ethoxycarbonyl-6-methyl-4-(4-hydroxyphenyl)-3,4-dihydropyrimidin-2
(1H)-one (4c)
Crystalline solid; Yield: 81%; M.p. 232-234 °C; 1H NMR (400 MHz, DM-
SO-d6): 1.11 (3H , t, J= 9.6 Hz, CH3CH2), 2.50 (3H, s, CH3), 3.98 (2H, q, J=9.2 
Hz, CH2O), 5.04 (1H, s, CHN), 6.68-7.04(4H, m, ArH), 7.64 and 9.13 (2H, 2s, 
2NH), 9.35 (1H, s, OH).  

5-Methoxycarbonyl-6-methyl-4-(2-chlorophenyl)-3,4-dihydropyrimidin-
2(1H)-one (4d) 
Crystalline solid; Yield: 85%; M.p.251-253 °C; 1H NMR (400 MHz, DMSO-d6): 
2.31 (3H, s, CH3), 3.46 (3H, s, OCH3), 5.62 (1H, s, CHN), 7.28-7.34 (3H, m, 
ArH), 7.42 (1H, d, J=7.2 Hz, ArH), 7.72 and 9.36 (2H, 2s, 2NH).
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5- Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-
one (4e) 
Crystalline solid; Yield: 82%; M.p. 220-222 °C; 1H NMR (400 MHz, DM-
SO-d6): 1.00 (3H , t, J= 9.2 Hz, CH3CH2), 2.31 (3H, s, CH3), 4.02 (2H, q, J=9.2 
Hz, CH2O), 5.63 (1H, s, CHN), 7.25-7.34 (3H, m, ArH), 7.41 (1H, d, J=8.8 Hz, 
ArH), 7.73 and 9.29 (2H, 2s, 2NH).

5-Methoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-
one (4g) 
Crystalline solid; Yield: 92%; M.p.212-214 °C; 1H NMR (400 MHz, DMSO-d6): 
2.28(3H, s, CH3), 3.55 (3H, s, OCH3), 5.28 (1H, s, CHN), 7.52 (2H, d, J= 8.4Hz, 
ArH), 7.22 (2H, d, J= 8.8Hz, ArH), 7.93 and 9.40 (2H, 2s, 2NH). 

5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-
one (4h)
Crystalline solid; Yield: 90%; M.p. 206-208 °C; 1H NMR (400 MHz, DMSO-d6): 
1.10 (3H, t, J= 9.6 Hz, CH3CH2), 2.28(3H, s, CH3), 3.99 (2H, q, J=9.2 Hz, CH2O), 
5.27 (1H, s, CHN), 7.50-7.53 (2H, m, ArH), 7.23 (2H, d, J= 9.2Hz, ArH), 7.92 
and 9.38 (2H, 2s, 2NH).

5-Ethoxycarbonyl-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2
(1H)-one (4j) 
Crystalline solid; Yield: 84%; M.p.205-207°C; 1H NMR (400 MHz, DMSO-d6): 
1.11 (3H , t, J= 9.6 Hz, CH3CH2), 2.24(3H, s, CH3), 3.73 (3H, s, OCH3), 3.99 
(2H, q, J=9.6 Hz, CH2O), 5.09 (1H, s, CHN), 6.89 (2H, d, J= 8.4Hz, ArH), 7.15 
(2H, d, J= 8.8Hz, ArH), 7.70 and 9.18 (2H, 2s, 2NH). 

5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-thione (4q) 
Crystalline solid; Yield: 89%; M.p.210-212 °C; 1H NMR (400 MHz, DMSO-d6): 
1.11 (3H , t, J= 7.2 Hz, CH3CH2), 2.31 (3H, s, CH3), 4.02 (2H, q, J=7.2 Hz, 
CH2O), 5.19 (1H, s, CHN), 7.23 (2H, d, J=7.2 Hz, ArH), 7.28 (1H, t, J=7.2 Hz,  
ArH), 7.36 (2H, t, J=7.2 Hz, ArH), 9.68 and 10.36 ( 2H, 2s, 2NH).

RESULTS
Initially, we chose benzaldehyde (1.0 mmol), urea (1.5 mmol) and ethyl 

acetoacetate (1.0 mmol) as the standard substrates to search for suitable reaction 
conditions in the presence of different molar catalyst under solvent-free con-
ditions at 70 °C. We tested several molar of catalyst for this multi component 
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synthesis. When 5, 10, 15 and 20 mol% of succinic acid were used, the yields 
were 31, 55, 76 and 91 %, respectively (Table 1, entries 2-5). Therefore, 20 
mol% of succinic acid were convenient (Table 1, entry 5) and excessive amount 
of succinic acid did not increase the yields significantly (Table 1, entry 10). 
Various temperatures from rt to 80 °C were optimized for this reaction. When 
the systematic screening was made, we found that, in the presence of 70 °C, 
substrates were transformed into the desired product 4a in an excellent yield 
(Table 1, entry 5). With these optimized conditions in hand, we examined the 
scope of this multi-component process by using various easily available starting
materials. As revealed in Table 2, a range of invaluable 3,4-dihydropyrimidin-
2-(1H)-ones/thiones derivatives can be synthesized in high to excellent yields.

Herein we reported the use of succinic acid as an efficient and bio-based 
green catalyst for eco-safe and convenient preparation of 3,4-dihydropyrimidin-
2-(1H)-ones/thiones derivatives using a multi-component reaction of aryl 
aldehyde derivatives (1, 1.0 mmol), urea/ thiourea (2, 1.5 mmol) and ethyl/
methyl acetoacetate (3, 1.0 mmol) under solvent-free conditions (Figure 1).

Table 1. Optimization of the reaction condition on the synthesis of 4a a

Isolated Yields 
(%)

Time 
(min)

Temperature 
(0C)

Succinic acid 
(mol %)

Entry

Not product24070Catalyst free1
31657052
554570103
763070154
912070205

Not product240rt206
386040207
713560208
922080209
9220702510

Note: a Reaction conditions: benzaldehyde (1.0 mmol), ethyl acetoacetate (1.0 mmol), urea 
(1.5mmol) and succinic acid was heated under various temperatures for the appropriate time. 
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DISCUSSION
Proposed mechanistic route of 3,4-dihydropyrimidin-2-(1H)-ones/

thiones synthesis in the presence of succinic acid are shown in Figure 2. 
In this probable mechanism, the succinic acid catalyzed Biginelli condensation 
via acylimin intermediate (A) is presented in Figure 2. The reaction of aldehydes 
(1) and urea (2) generates an acylimin intermediate (A), which further reacts with 
the activated 1,3-dicarbonyl compound (B) producing an open-chain ureide (C) 
undergoing subsequent cyclization and dehydration to give the major product (4).
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Figure 2. Proposed mechanistic route for the synthesis of 3,4-dihydropyrimidin-
	      2-(1H)-ones/thiones. 

Comparison of catalytic ability some of catalysts reported in the 
literature for synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones/thiones derivatives 
are shown in Table 3. This study reveals that succinic acid has shown its 
extraordinary potential to be an alternative green, bio-based, readily, highly 
efficient and inexpensive catalyst for the Biginelli reaction. In Addition, the 
use of solvent-free conditions with high to excellent yields and short reaction 
times in the reaction with both urea and thiourea are the notable advantages this 
eco-safe and simple procedure.
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Table 3. Comparison of catalytic ability some of catalysts reported in the literature 
for synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones/thiones derivatives a

ReferencesTime/Yield 
(%)

ConditionsCatalyst Entry

(Kumar 
et al., 2007)

24h/84Room temperaturebakers, yeast1

(Lal et al., 
2012)

35 min/84Solvent-free, 80 °CHydrotalcite2

(Litvic et al., 
2010)

20 h/81MeCN, Reflux[Al(H2O)6](BF4)33

(Kamal 
et al., 2007)

30 min/90Room temperatureCu(BF4)2.xH2O4

(Zhang 
et al., 2015)

30 min/96Solvent-free, 90 °C[Btto][p-TSA]5

(Attri et al., 
2017)

45min/90Solvent-free, 70 °Ctriethylammonium acetate6

(Aswin 
et al., 2014)

3 h/94Solvent-free, 80 °Cp-dodecylbenzenesulfonic 
acid

7

(Rao Jetti 
et al., 2017)

3 h/95EtOH/RefluxTMSPTPOSA 8

This work20 min/91Solvent-free, 
70 °C

Succinic acid9

Note: a Based on the three-component reaction of benzaldehyde, ethyl acetoacetate and urea. 

CONCLUSION
In summary, the use of succinic acid as a bio-based green and mild 

catalyst for facile preparation of 3,4-dihydropyrimidin-2-(1H)-ones/thiones 
derivatives via one-pot three-component Biginelli condensation of aryl 
aldehydes, urea/thiourea and ethyl/methyl acetoacetate is studied. The use of 
readily, easily to handle, non-toxic and inexpensive catalyst, simple work-up 
and solvent-free conditions provides a sustainable procedure compared to
conventional methods.
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