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ABSTRACT
Dimension effect is an important effect to understand nanoscience and

nanotechnology. In this work, dimension effect on intrinsic carrier concentration of semi-
conductor has been studied. The study is based on the calculation from the density of state
at 3, 2, 1 and 0 dimensions at temperature kBT<<Eg / 2where Eg is energy gap. Since the
density of state at different dimension has different function, intrinsic carrier concentra-
tion calculated from density of state is expected to vary as a function of dimension. For 2,
1 and 0 dimensions, the energy level are discrete outside the energy gap. Moreover, 1 and
0 dimensions also have degenerated state and the degeneracy has an effect on density of
state. From the calculation, it has been found that the intrinsic carrier concentration of
semiconductor depends on the dimension and is proportional to TD/2 exp(–Eg / 2kBT) where
D is a dimension.
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INTRODUCTION
Dimension effect is an important effect to understand nanoscience and nanotechnology.

Due to dimension effect, the properties of nanostructures are different from the properties of
microstructures or bulk. For example, density of state (DOS) at different dimension has a
different function as shown in Figure 1. For 3 dimension, DOS is a continuous function with
respect to energy and is related to a square root of energy. For 2, 1 and 0 dimensions, the
DOSs are the discrete function with respect to energy. The lower the dimension, the smaller
the number of available energy values and the discrete function turns into a delta function at
zero dimension.
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Figure 1. The function of density of state at 3, 2, 1 and 0 dimensions with respect to the
energy.

Density of states and Fermi-Dirac distribution are the basic parameters for calculation
of electrical properties such as intrinsic carrier concentration, heat capacity and conductivity,
etc. Therefore, a change of dimension should have an effect on the electrical properties.

Bogacheck et al., (1996) have calculated the conductance of nanowire and demon-
strated the quantization of conductance in the value 2e2 / h of according to Landauer formula.
The conductance quantization of gold nanowire has been experimentally confirmed by
Takayanaki (2001). However, to our best knowledge, there has been no report on the intrinsic
carrier concentration as a function of dimension.

In this paper, we report on dimension effect on intrinsic carrier concentration of semi-
conductor, calculated from density of state and Fermi-Dirac distribution. We will demon-
strate that the intrinsic carrier concentration of semiconductor depends on the dimension and
is proportional to TD/2 exp(–Eg / 2kBT) where D is a dimension.

MATERIALS AND METHODS
Assumption and calculation method:

The electron and hole concentrations can be defined as in equation (1).
(1)

n =   De (ε) fe (ε) dε   and  p =   Dh (ε) fh (ε) dε

For further calculation, the following assumptions are applied:
1. Fermi-Dirac distribution can be applied to all dimensions
2. All dimensions have conduction level and valence level
3. The thermal energy satisfies the condition ε – µ >> kBT
4. For all dimensions, intrinsic carrier concentration follows law of mass action

ni = np.
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Then, the Fermi-Dirac distribution and density of state in 2, 1 and 0 dimension are
substituted in Equation (1).

Thus, at room temperature ε – µ >> kBT, then Fermi-Dirac distribution can be written
down as

(2)

(3)

where fe(ε) is a electron distribution in the conduction band
fh(ε) is a hole distribution in the valence band.

For 2 dimension, density of state of electrons and holes are

(4)

(5)

Therefore, electron and hole concentrations in 2 dimension are

(6)

(7)

For 1 dimension, density of state of electrons and holes are

(8)

(9)

Therefore, electron and hole concentrations in 1 dimension are

(10)

(11)

For 0 dimension, density of state of electrons and holes are

(12)

Therefore, electron and hole concentrations in 0 dimension are
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(14)

Finally, the intrinsic carrier concentration can be obtained from law of mass action.

RESULTS AND DISCUSSION
The general solution of the product of electron and hole concentrations in 3, 2, 1 and 0

dimensions, calculated from density of state, are summarized in Table 1. In order to simply
calculate the intrinsic carrier concentration, we considered the special cases for two cases.
For the first case, electrons are considered to have energy only Ec and holes are considered to
have energy only Ev. The calculated intrinsic carrier concentration for the first case is sum-
marized in Table 2. It was found that the intrinsic carrier concentration is related to dimen-
sion as

niD α TD/2 exp(–Eg / 2kBT)   ;D=3,2,1 and 0 (15)

Table 1. The general solution of the product of electron and hole concentrations in 3, 2, 1
and 0 dimensions calculated from density of state.

p0D =  D0D (ε)h,d fh (ε)dε = exp(–µ / kBT)   A∑njδ(ε – εj)exp(–ε / kBT)dε
Ev

−∞

Ev

−∞ j

where
Ecn

 is an energy level in conduction level of order n and Ec1
=Ec

Evn
 is an energy level in valence level of order  n and Ev1

 = Ev .

The plot of intrinsic carrier concentration as a function of temperature for the first case
is shown in Figure 2. It can be seen that the curves are different at different dimension.
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Table 2. The first case of intrinsic carrier concentration in 3, 2, 1 and 0 dimensions.

Dimension First case of intrinsic carrier concentration (ni)

ni,3D = 2                 (memh)3/4 exp(–Eg / 2kBT)
3/2

(       )kBT
2πh2

ni,2D =              (memh)1/2 exp(–Eg / 2kBT)(       )kBT
πh2

ni,1D =                 (memp)1/4 exp(–Eg / 2kBT)
1/2

(       )2kBT
πh2

ni,0D = A exp(–Eg / 2kBT)
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Figure 2. Plot of intrinsic carrier concentration as a function of temperature for the first case.

For the second case, energy level of electrons in upper conduction level and energy
level of holes in lower valence level are considered to be symmetrical, behave as the free
electron and then, follow the relation

Ecn
 = n2Ec  and  Evn

 = Ev –(n2 –1)Ec ; ncn
 = nvn

(16)

The calculated intrinsic carrier concentration for the second case is summarized in
Table 3.
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Table 3. The second case of intrinsic carrier concentration in 3, 2, 1 and 0 dimensions.

To investigate in more detail, ZnO was used as a study case. For ZnO at room tempera-
ture about 300 K, it was found that the first term of series in all dimensions was greater than
the other term of series. Thus, the first case and the second case have the same function.
Then, the intrinsic carrier concentration can be related to dimension as

ni,Dα   TD/2 exp(–Eg / 2kBT)    ; D = 3,2,1 and 0.

Moreover, if we plotted the graph between 1nn+Eg / 2kBT and 1nT, the slope of the
graph would correspond to D/2 as shown in Figure 3. This plot could be used to determine the
dimension of the sample by comparing with the experimental results.

Dimension Second case of intrinsic carrier concentration (ni)
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CONCLUSION

The dimension effect on intrinsic carrier concentration of semiconductor has been
studied. The study is based on the calculation from the density of state at 3, 2, 1 and 0 dimen-
sions at temperature kBT <<         where Eg is energy gap. From the calculation, it was found
that the intrinsic carrier concentration of semiconductor depends on the dimension and it is
proportional to TD/2 exp(–Eg / 2kBT) where D is a dimension. Moreover, the slope of the plot
between 1nn+Eg / 2kBT and 1nT would correspond to D/2 and could be used to determine the
dimension of the sample by comparing with the experimental results.
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