
 

Open access freely available online NAT. LIFE SCI. COMMUN. 2025. 24(1): E2025014 

 

1 Natural and Life Sciences Communications: https:// cmuj.cmu.ac.th 

Physio-Chemical Indoor Air Quality 
Analysis and CO₂ Ventilation Forecasting 
Using Artificial Neural Networks in Boat 
Manufacturing  
                
Muhammad Salahuddin Mohd Azman1, Amalina Abu Mansor2, 3,  
Aimi Nursyahirah Ahmad2, 3, Marzuki Ismail2, 3, 4,  
Mohammad Nor Khasbi Jarkoni1, and Samsuri Abdullah1, 2, 3, * 
  
 
1 Faculty of Ocean Engineering Technology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, 
Malaysia. 
2 Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala 
Nerus, Terengganu, Malaysia. 
3 Atmospheric Research and Technology Group (ARTG), Universiti Malaysia Terengganu, 21030, Kuala Nerus, 
Terengganu, Malaysia. 
4 Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, 
Malaysia. 

This study presents a comprehensive analysis of indoor air 
quality within a boat manufacturing facility, focusing on the physio-
chemical parameters and forecasting of CO₂ levels using artificial 
neural networks (ANN). The investigation involved measuring key 
physical, chemical, and ventilation performance factors, including 
total volatile organic compounds (TVOC), particulate matter (PM10, 
PM2.5, PM1), formaldehyde (HCHO), carbon monoxide (CO), 
temperature, relative humidity (RH), and air movement. The ANN 
model, employing a multilayer perceptron (MLP) architecture 
optimized with the Levenberg-Marquardt algorithm, was developed 
to predict CO₂ concentrations based on these inputs. The results 
revealed that indoor activities such as sanding, cutting, painting, and 
adhesive application significantly elevated levels of TVOC, particulate 
matter, and formaldehyde, often exceeding acceptable limits. The 
ANN model demonstrated high predictive accuracy, with correlation 
coefficients (R) ranging from 0.7556 to 0.8725 during training and 
0.6798 to 0.8163 during validation and mean squared error (MSE) 
values as low as 0.0048 ppm. The optimal model architecture was 
identified as 8:15:1, providing a reliable forecast of CO₂ levels with 
an accuracy of up to 87.25%. This study underscores the importance 
of monitoring indoor air quality in industrial environments and 
highlights the potential of ANN-based models for enhancing 
ventilation strategies. By enabling real-time prediction of CO₂ 
concentrations, the model offers a practical approach to maintaining 
healthier indoor conditions and improving worker safety. The findings 
suggest that such predictive tools could be effectively implemented 
in similar industrial settings to mitigate air quality issues and ensure 
compliance with health standards. 
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INTRODUCTION 

Air pollution in the Malaysian Peninsula has increased because of more vehicles 
on the roads and rapid urban development (Usmani et al., 2020). These changes 
have degraded air quality, endangering health, especially for those who are most 
vulnerable (Douglass, 2020). While most people concentrate on outdoor air quality, 
indoor air pollutants are also well-acknowledged to have negative impacts on 
individuals, particularly on vulnerable populations like children, the elderly, and those 
suffering from cardiovascular disease (Rafiq et al., 2021). This claim was supported 
by a prior study that showed how stressors related to poor indoor air quality might 
negatively impact a person's early development, particularly a child's growth (Garcia 
et al., 2021). Cardiovascular illnesses, lung cancer, early mortality, asthma, and 
bronchitis were among the detrimental effects of poor indoor air quality (IAQ), 
particularly for vulnerable populations (Chen et al., 2022). The majority of the day is 
spent by the occupants carrying out their everyday tasks inside the building. 
Consequently, early-life exposures that may raise lifetime illness risk depend on 
workplace indoor air quality (IAQ) (Lolli et al., 2022). Studies conducted on workers 
have shown that while prolonged exposure to PM10, NO2, and SO2 may affect workers' 
lung development in later life (Lytras et al., 2020), higher building carbon dioxide 
(CO2) concentrations short-term reduced workers' attendance (Laurent et al., 2021). 
More importantly, air pollution may have a significant impact on the central nervous 
system during vulnerable times (Sîrbu et al., 2022), which could have an impact on 
behavior and productivity at work. To give employees a comfortable, safe, and 
productive environment, a workplace with good IAQ is essential. As a result, the 
indoor environment needs special consideration because it poses a risk to public 
health. 

People spend over 90% of their working hours indoors, which is becoming 
increasingly significant and receiving attention as a result of spending more time 
indoors, whether in homes or offices (Awada et al., 2020). Prior investigations have 
demonstrated that indoor air is more polluted than outdoor air (Stratigou et al., 
2022). The assessment of indoor air quality (IAQ) has gained significant attention 
due to the high concentration of indoor contaminants that might increase health 
hazards, especially with longer exposure times. Formaldehyde (HCHO), particle 
matter (PM), often referred to as respirable particulates, volatile organic compounds 
(VOCs), carbon monoxide (CO), carbon dioxide (CO2), and ozone (O3) were the most 
frequently observed indoor air pollutants (Zhang et al., 2020). In general, 
assessments of indoor air quality (IAQ) were carried out for several reasons, including 
to identify the sources of pollutants that are prevalent in indoor environments, and 
to learn about potential negative effects (Bakri et al., 2018; Mansor et al., 2024), 
and to ascertain whether building constructors and occupants intended to meet 
standard limit values.  

High CO₂ concentrations are often a sign of inadequate ventilation, which can 
lead to a buildup of indoor pollutants and negatively impact worker health and 
comfort. Consequently, accurate forecasting of CO₂ levels is crucial for effective 
ventilation management and ensuring a safe working environment (Kallio et al., 
2021). Traditional methods of predicting CO₂ levels based on physical models or 
empirical relationships often fall short due to their inability to capture the complex, 
non-linear interactions between various environmental parameters. Artificial Neural 
Networks (ANNs), particularly Multilayer Perceptrons (MLPs), offer a promising 
alternative. ANNs are capable of learning intricate patterns and relationships from 
historical data, making them well-suited for modeling the non-linear dependencies 
between indoor air quality parameters and CO₂ concentrations. By leveraging the 
power of ANNs, it is possible to develop predictive models that provide accurate 
forecasts of CO₂ levels, thereby facilitating more effective control of ventilation 
systems. 
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MATERIAL AND METHODS 

Study area 

MSET Inflatable Composite Corporation, located at coordinates 103°4'46.21"E, 
5°22'45.13"N in Kuala Terengganu, Malaysia (Figure 1(a)), is a long-established and 
respected entity in the boat and shipbuilding industry. Founded on April 30, 2005, 
MSET Inflatable Composite Corporation has grown to become a key player in the 
manufacturing sector. The company’s latest financial highlights reveal significant 
growth, with net sales revenue increasing by 135.02% in 2021. However, during the 
same period, the company's total assets decreased by 48.81% (MSET, 2021).  

The focus of this study is on the fabric and woodwork workshop area of the 
company, which represents a critical part of its manufacturing operations. The 
importance of maintaining a comfortable and healthy working environment is 
emphasized due to the nature of the indoor settings in which employees operate. The 
workshop is equipped with a mechanical ventilation and air conditioning (MVAC) 
system, designed to regulate the indoor climate and ensure that air quality is 
managed effectively. 

In today's economic and industrial context, prioritizing employee well-being is 
essential. A comfortable indoor environment not only enhances productivity but also 
helps in preventing health issues and discomfort among workers. Factors such as 
lighting, temperature, humidity, air quality, and interior design all play significant 
roles in shaping the indoor environment. Proper management and balance of these 
factors are crucial for creating a healthy and conducive workspace. Ensuring optimal 
conditions can help maintain high standards of employee comfort and health, 
ultimately contributing to the overall success of the business (Ali et al., 2019). 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1. The study site is situated within the MSET Inflatable Composite 
Corporation (a); The sampling points in the MSET Inflatable Composite 
Corporation (b). 



 

Open access freely available online NAT. LIFE SCI. COMMUN. 2025. 24(1): E2025014 

 

4 Natural and Life Sciences Communications: https:// cmuj.cmu.ac.th 

 (b) 

 
Figure 1. Continued. 

Sampling campaign 

Physical, chemical, and ventilation performance factors were measured for this 
investigation. The chemical criteria include the following: total volatile organic 
compound (TVOC) (ppm), respirable suspended particulate (RSP) (mg/m3), and 
formaldehyde (HCHO) (ppm). The physical metrics were temperature (T) (°C), air 
movement (AM) (m/s), relative humidity (RH) (%), and lastly the carbon dioxide 
(CO2) (ppm) which indicated the ventilation performance. The study area is located 
on the first level of a building with a total area of 800 square meters and a volume 
of 5600 cubic meters. The manufacturing space features 4 windows, 3 doors, 2 
industrial fans, and a single air conditioning unit, with the ventilation system relying 
on an open configuration that likely facilitates natural airflow. The building, 
constructed over 10 years ago, is primarily made of concrete and is situated in an 
industrial zone. Traffic around the facility often involves traffic light controls, which 
could affect air quality due to intermittent vehicle emissions. The facility operates 
from 7:30 AM to 6:30 PM, accommodating 26 occupants during working hours. The 
sampling points consisted of a total of 10 locations (Figure 1(b)), all positioned inside 
the buildings of MSET Inflatable Composite Corporation. Samples were collected at 
6-minute intervals, from 0800 to 1700 hours, to capture variations in indoor air 
quality throughout the workday. The study area encompassed key areas of the 
facility: the fabric assembly area (S2-S7), fabric cutting area (S1 & S8), and wood 
workshop (S9 & S10). This distribution of sampling locations was chosen to represent 
a range of work environments and potential emission sources within the facility. The 
instruments used to measure these chemical and physical parameters, as well as the 
indicators of ventilation performance (Abdullah et al., 2019), were listed in Table 1. 
To ensure the accuracy and relevance of the data, the instruments were positioned 
according to guidelines from the 2010 Industrial Code of Practice (ICOP-IAQ 2010) 
(Department of Occupational Safety and Health, 2010). Specifically, they were placed 
between 75 and 120 cm above the floor, with a preferred height of 110 cm from the 
floor when possible (Mansor et al., 2024). This positioning helps ensure that 
measurements are representative of the air quality experienced by occupants in 
typical working conditions. 
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Table 1. Instruments used for measuring chemical, physical, and ventilation parameters. 

Instruments Range Accuracy Parameters 

TSI Climomaster  
Model 9545 
 

Air Velocity: 
0.15 to 30 m/s 
Temperature:  
10°C to 60°C  
5 to 95%RH 

Air Velocity: ±2% or  
± 0.03 m/s  

Temperature: ±0.5°C 
±3%RH 

Temperature, relative 
humidity, and air 
movement 

DustTrak DRX Aerosol 
Monitor 8533RSP 

PM1, PM2.5, and PM10: 

0.001 to 150 mg/m³  
±10% ±0.001 mg/m³ RSP-(PM10, PM2.5, PM1) 

Q-Trak Indoor Air Quality 
Monitor 7575 

0 to 5,000 ppm ±30 ppm ±3% Carbon dioxide 

Formaldehyde meter 0.01 to 5.00 ppm ±0.01 ppm or ±5% Formaldehyde 

Portable VOC Monitor 
MiniRae 30000 0.1 to 10,000ppm ±5% or ±0.1 ppm TVOC 

  

Correlation analysis 

Spearman's correlation coefficient was employed to analyze the measured data, 
providing insights into both the direction and strength of relationships between 
different parameters. This statistical method is particularly useful for identifying and 
quantifying the degree of association between variables, regardless of whether the 
relationships are linear or non-linear (Kalimeri et al., 2019, Deng et al., 2017). The 
correlation coefficient (r) can range from -1 to 1, where the sign indicates the 
direction of the relationship, and the magnitude reflects the strength of the 
correlation. Values between 0 and 0.30 indicate a weak correlation. This means that 
there is a slight association between the variables, but the relationship is not strong 
enough to be considered significant. A weak correlation suggests that changes in one 
variable are not reliably associated with changes in another. Correlation coefficients 
that fall between 0.31 and 0.49 are considered moderate. In this range, there is a 
noticeable association between variables, though it is not particularly strong. 
Moderate correlations imply that while there is some degree of predictability between 
the variables, other factors may also be influencing the relationship. When the 
correlation coefficient is between 0.50 and 1.00, the relationship between the 
variables is considered strong. A strong correlation indicates a high degree of 
association, where changes in one variable are closely related to changes in the other. 
Such strong correlations suggest a significant and potentially causal relationship 
between the parameters being analyzed. A positive coefficient (ranging from 0 to 1) 
indicates that as one variable increases, the other variable tends to increase as well, 
reflecting a direct relationship. A negative coefficient (ranging from -1 to 0) signifies 
that as one variable increases, the other tends to decrease, indicating an inverse 
relationship (Walizada, 2021).   

ANN models development 

The design and training of an Artificial Neural Network (ANN) model for CO₂ 
forecasting is a multi-step process that involves carefully selecting relevant input 
parameters, constructing a suitable network architecture, and applying an effective 
training algorithm. The choice of training algorithm is critical to the model's 
performance, and in this case, the Levenberg-Marquardt (LM) algorithm has been 
chosen for its efficiency and reliability in handling non-linear optimization problems 
(Cho et al., 2021). The first step in designing the ANN model is to identify and select 
the input parameters that are most relevant to predicting CO₂ concentrations. These 
parameters typically include a variety of environmental factors that influence indoor 
air quality. In this model, eight input parameters have been selected as Total Volatile 
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Organic Compounds (TVOC), Particulate Matter (PM10, PM2.5, PM1), Formaldehyde 
(HCHO), Temperature, Air Movement, and Relative Humidity. These parameters are 
fed into the input layer of the ANN, where each parameter is represented by a neuron.  

The architecture of the ANN model refers to the configuration of the network, 
including the number of layers and the number of neurons in each layer. This 
architecture is crucial for the model's ability to learn and generalize from the data. 
The input layer consists of neurons corresponding to each of the selected input 
parameters. In this case, there would be eight neurons, matching the number of 
input factors that influence CO₂ levels. The hidden layer is where the network 
performs its computational tasks, learning the relationships between the input 
parameters and the output. The complexity of the problem dictates the number of 
hidden layers and neurons. For CO₂ forecasting, a single hidden layer is often 
sufficient to capture the necessary patterns in the data. According to Camargo & 
Yoneyama (2001), the number of neurons in the hidden layer is typically set to a 
value not more than twice the number of inputs. This guideline helps balance the 
model's capacity to learn complex patterns while avoiding overfitting. In this case, 
with eight input parameters, the hidden layer could contain up to 16 neurons, though 
often a smaller number is selected to reduce computational complexity and improve 
model generalization. The output layer of the ANN has a single neuron, which 
represents the predicted CO₂ concentration. The purpose of the model is to forecast 
a single output value, making this simple output structure appropriate for the task. 
The output layer neuron uses a linear activation function, suitable for predicting 
continuous values of CO₂ levels. 

To develop a robust and reliable ANN model for CO₂ forecasting, the collected 
data must be carefully managed and split into distinct sets for training and validation. 
This ensures that the model not only learns from the data but also generalizes well 
to new, unseen data. The data is divided into two main subsets: a training set and a 
validation set. The training set, which constitutes 70% of the total data, is used to 
train the ANN model. This means that during the training phase, the model is exposed 
to a wide range of scenarios and variations within the data, allowing it to learn the 
underlying patterns and relationships between the input parameters (such as TVOC, 
RSP, HCHO, temperature, air movement, and RH) and the output (CO₂ 
concentration). The remaining 30% of the data is allocated to the validation set. This 
subset plays a crucial role in evaluating the model's performance on unseen data. By 
testing the model on this independent validation set, we can assess how well the 
model is likely to perform in real-world situations where it encounters data that was 
not part of the training process. This step is critical for identifying potential 
overfitting, where the model may perform well on the training data but fails to 
generalize to new data.  

Before the training process begins, it is essential to normalize the data. 
Normalization adjusts the range of the input parameters so that they all fall within a 
similar scale, typically between 0 and 1. Without normalization, the training process 
could be inefficient or lead to suboptimal results, as the model might give undue 
importance to parameters with larger numeric ranges. Normalizing the data ensures 
that each input contributes equally to the learning process, improving the overall 
efficiency and effectiveness of the model training (Raju et al., 2020). After the 
training process is complete, the model's performance is evaluated using the 
validation dataset. This step involves measuring how accurately the model predicts 
CO₂ concentrations when exposed to new data. Two key performance metrics are 
commonly used for this evaluation: (i) Correlation Coefficient (R) measures the 
strength and direction of the linear relationship between the observed and predicted 
CO₂ values. A correlation coefficient close to 1 indicates a strong positive relationship, 
suggesting that the model's predictions closely match the actual data. This metric 
helps in understanding how well the model captures the underlying trends in the 
data, (ii) Mean Squared Error (MSE) quantifies the average squared difference 
between the predicted and actual CO₂ values. It provides a measure of the model's 
accuracy, with lower MSE values indicating better performance. MSE is particularly 
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useful because it penalizes larger errors more heavily, ensuring that the model 
minimizes not just the average error but also the impact of significant deviations 
(Diez et al., 2022). 

RESULTS  

Indoor air quality patterns in a boat manufacturing facility 

In the research area, air movement was consistently below the normal range 
of 0.15-0.50 m/s for most of the period between 0800 and 1700 hours. This low air 
movement can significantly impact indoor air quality, especially when various 
activities are being carried out. Specifically, activities such as sanding foam and 
wood, applying adhesive foam, cutting foam and wood, painting, and housekeeping 
were conducted during this time. These activities contributed to elevated levels of 
chemical pollutants, which exceeded acceptable limits. Most of these activities began 
around 0900 hours. Table 2 and Figure 2 a) to e) illustrate that, at this time, there 
was a marked increase in the concentrations of chemical parameters, air pollutants, 
and the ventilation performance indicators. The presence of only one functional air 
conditioner in the study area further exacerbated the situation. This single unit was 
insufficient to effectively manage the indoor environment, leading to suboptimal air 
quality.  

According to Table 2, the mean temperature in the research area exceeded the 
recommended range of 27.22°C to 31.47°C as specified by the ICOP-IAQ 2010 
standards. Figure 2a) shows that temperature trends were inversely related to 
relative humidity levels, meaning as temperatures increased, relative humidity 
decreased. This inverse correlation suggests that as the temperature rose, the 
capacity of the air to hold moisture decreased, which could affect comfort and air 
quality. Furthermore, the concentration of particulate matter was notably high, with 
hourly mean values surpassing the standard limit. Specifically, PM10 levels ranged 
from 0.47 to 0.52 mg/m³, PM2.5 ranged from 0.44 to 0.48 mg/m³, and PM1 ranged 
from 0.43 to 0.47 mg/m³. These elevated levels were attributed to the dust and 
particles generated by indoor activities like sanding and cutting wood and foam. 

Additionally, chemical parameters such as Total Volatile Organic Compounds 
(TVOC) also exceeded standard limits. This was due to the use of solvents like ethyl 
acetate, toluene, and glue, which were employed in foam production, boat building, 
and cleaning processes. These substances release significant amounts of VOCs into 
the air, further degrading air quality. The reduced air movement, with mean values 
between 0.12 and 0.14 m/s, compounded the issue. The limited air circulation, 
coupled with the inefficacy of the single functioning air conditioner, resulted in poor 
dispersion of air pollutants. This concentration of pollutants made it challenging to 
maintain acceptable indoor air quality, highlighting the need for improved ventilation 
and air management strategies in the study area. 

Table 2. Trend of indoor air quality (IAQ) parameters and compliance with Malaysian standards. 

MEAN 8:00 9:00 11:00 12:00 14:00 15:00 16:00 STANDARD 

AT (0C) 26.24 27.22 29.27 30.40 31.34 31.47 30.78 23.00-26.00 

AM (m/s) 0.12 0.12 0.13 0.14 0.12 0.13 0.12 0.15-0.50 

RH (%) 79.97 75.27 67.62 64.62 62.52 63.86 63.65 40.00-70.00 

PM10 (mg/m3) 0.47 0.48 0.51 0.52 0.46 0.52 0.50 0.15 

PM2.5(mg/m3) 0.44 0.45 0.47 0.47 0.43 0.48 0.47 0.15 

PM1 (mg/m3) 0.44 0.45 0.47 0.47 0.43 0.47 0.47 0.15 

HCHO (ppm) 0.02 0.03 0.03 0.04 0.03 0.04 0.04 0.10 

TVOC (ppm) 0.01 41.28 32.29 87.68 3.36 87.68 38.29 3.00 

CO2 (ppm) 479.95 490.53 476.26 482.15 445.48 474.67 484.33 1,000.00 
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Figure 2. Trend of air movement (a) trend of temperature and relative 
humidity (b) trend of PM10, PM2.5 and PM1 (c) trend of HCHO (d) trend of 
TVOC and CO2 (e). 
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Figure 2. Continued. 

The data presented in Table 3 shows the indoor-to-outdoor (I/O) ratios for 
particulate matter (PM) sizes PM10, PM2.5, and PM1. Specifically, the ratios are PM10 = 
1.22, PM2.5 = 1.13, and PM1 = 1.13. These ratios indicate that particulate matter, 
particularly PM10, predominantly originates from indoor sources rather than external 
sources. The I/O ratio greater than 1 for PM10 suggests that there was minimal 
intrusion of external air into the research area, emphasizing that the majority of PM10 
pollution was generated internally rather than coming from outside. The variability in 
pollutant concentrations, especially Total Volatile Organic Compounds (TVOC), over 
time further supports this finding. The I/O ratio for TVOC was 64.74, which highlights 
that TVOCs are primarily sourced from indoor activities and materials rather than 
external sources. This high I/O ratio indicates that TVOC levels are significantly 
influenced by indoor sources such as solvents, adhesives, and other chemicals used 
in the research area. 

The prevalence of Respirable Suspended Particulate (RSP) indoors is influenced 
by several factors, including the quantity of outside pollution, the amount of pollution 
brought inside, and the presence of indoor sources. The I/O ratio for RSP, as shown 
in Table 3, suggests that natural ventilation, which could have reduced indoor 
pollutant levels, was not a preferred method in this setting. At this sampling point, 
the workshop is an open space where natural ventilation plays a role in managing 
indoor air quality. The natural airflow, typically provided through windows, doors, 
and other openings, can facilitate the exchange of indoor and outdoor air, potentially 
helping to dilute and remove pollutants. However, as indicated by the I/O ratio for 
RSP in Table 3, it appears that natural ventilation, although potentially beneficial in 
reducing indoor pollutant levels, was not fully optimized in this setting. One possible 
reason for this could be that the workshop's design or environmental factors, such 
as external wind patterns or the arrangement of the openings, may not have been 
conducive to promoting sufficient air movement to effectively manage pollutant 
concentrations. Additionally, the potential advantages of natural ventilation in 
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HCHO )ppm( 
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enhancing the deposition velocity of pollutants such as promoting the settling of 
particulate matter were not effectively utilized, which likely contributed to the lower 
I/O ratios for RSP. This suggests that pollutants, including particulate matter, may 
have remained suspended in the air longer than desired, leading to higher indoor 
concentrations. Given these factors, it is possible that the use of air conditioning, 
which can provide more controlled and consistent air movement and filtration, might 
be more effective in this scenario. Air conditioning could help maintain a more stable 
indoor environment by regulating both temperature and humidity, while also 
improving the efficiency of air circulation and pollutant removal. Thus, in this 
particular setting, air conditioning might offer a more reliable method for managing 
air quality compared to relying solely on natural ventilation. The impact of natural 
ventilation on the deposition velocity of pollutants was not effectively utilized, leading 
to lower I/O ratios for RSP. The lower I/O ratio values for RSP indicate that the 
buildings were relatively well-protected from external contaminants. This suggests 
that the indoor air quality issues were primarily a result of internal sources rather 
than external pollution. The data underscores the need for better management of 
indoor sources of pollutants and highlights that improving natural ventilation could 
potentially enhance indoor air quality by reducing the concentration of pollutants. 

Table 3. I/O ratio for assessing the influence of external factors on indoor air quality. 

 AT AM RH PM10 PM2.5 PM1 HCHO TVOC CO2 

 I/O RATIO 0.925 0.822 0.872 1.222 1.133 1.132 1.198 64.739 1.213  

 
Interrelationship of indoor air quality parameters 

To analyze the relationships between pairs of parameters, Spearman's 
correlation coefficient was utilized due to the non-parametric nature of the data and 
its violation of the normality test. Spearman's correlation is suitable for assessing the 
strength and direction of monotonic relationships between variables when the data 
does not follow a normal distribution. These correlations provide a comprehensive 
overview of the interrelationships between various air quality parameters and 
environmental factors, highlighting the complexity of indoor air quality dynamics and 
the influence of different factors on pollutant levels. According to the results 
summarized in Table 4, a very strong positive correlation was found (r = 0.919,  
P < 0.01), indicating that as PM10 levels increase, PM2.5 levels also increase 
proportionally. Another strong positive correlation was noted (r = 0.916, P < 0.01), 
suggesting that PM10 and PM1 levels are closely related. PM2.5 and PM1 showed an 
exceptionally strong positive correlation (r = 0.994, P < 0.01), reflecting a nearly 
perfect relationship between these particulate matter sizes. A strong positive 
correlation was identified (r = 0.553, P < 0.01), indicating a significant association 
between CO2 levels and TVOC concentrations. A strong negative correlation was 
observed (r = -0.516, P < 0.01), suggesting that as TVOC levels increase, RH tends 
to decrease, or vice versa. A moderate positive correlation (r = 0.325, P < 0.01) was 
found, indicating a noticeable association between formaldehyde levels and 
temperature. Moderate positive correlation (r = 0.312, P < 0.01), showing a 
moderate relationship between HCHO and PM10 levels. A moderate positive 
correlation (r = 0.361, P < 0.01) was identified, indicating some degree of association 
between HCHO and PM2.5. Similar moderate positive correlation (r = 0.371, P < 0.01) 
was found, reflecting a moderate link between HCHO and PM1. A moderate positive 
correlation (r = 0.453, P < 0.01) was observed, indicating a notable relationship 
between TVOC and PM10. A moderate positive correlation (r = 0.383, P < 0.01) was 
detected, showing a significant association between TVOC and PM2.5. Moderate 
positive correlation (r = 0.375, P < 0.01) was noted, indicating a moderate link 
between TVOC and PM1. A moderate positive correlation (r = 0.379, P < 0.01) was 
found, showing a moderate association between TVOC and formaldehyde. 
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A moderate positive correlation (r = 0.474, P < 0.01) was observed, reflecting a 
significant relationship between CO2 and PM10 levels. Another moderate positive 
correlation (r = 0.412, P < 0.01) was detected, indicating a moderate association 
between CO2 and PM2.5. A moderate positive correlation (r = 0.409, P < 0.01) was 
found, showing a notable link between CO2 and PM1. A moderate negative correlation 
(r = -0.414, P < 0.01) was observed, suggesting that as RH increases, AM tends to 
decrease. Moderate negative correlation (r = -0.425, P < 0.01) indicates that HCHO 
levels and RH are inversely related. A moderate negative correlation (r = -0.423,  
P < 0.01) was found, showing that CO2 levels and temperature have an inverse 
relationship.  

A weak positive correlation (r = 0.204, P < 0.01) was observed, indicating a 
slight association between AM and temperature. A weak positive correlation  
(r = 0.206, P < 0.01) was found, suggesting a minor relationship between CO2 and 
formaldehyde. Weak positive correlation (r = 0.279, P < 0.01) was noted, showing  
a slight association between NOP and PM10 levels. A weak positive correlation (r = 
0.197, P < 0.01) was observed, reflecting a minor relationship between NOP and 
PM2.5. Another weak positive correlation (r = 0.194, P < 0.01) was found, indicating 
a slight link between NOP and PM1. A weak positive correlation (r = 0.256, P < 0.01) 
was detected, suggesting a minor association between NOP and TVOC. A weak 
positive correlation (r = 0.233, P < 0.01) was observed, indicating a slight 
relationship between NOP and CO2. A weak negative correlation (r = -0.085, P < 0.01) 
was found, showing a minimal inverse relationship between PM10 and temperature. 
A weak negative correlation (r = -0.117, P < 0.01) was detected, suggesting a slight 
inverse relationship between PM10 and AM. A weak negative correlation (r = -0.232, 
P < 0.01) was observed, reflecting a minor inverse relationship between PM10 and RH. 
A weak negative correlation (r = -0.096, P < 0.01) was found, indicating a slight inverse 
relationship between PM2.5 and AM. A weak negative correlation (r = -0.232,  
P < 0.01) was observed, reflecting a minor inverse relationship between PM2.5 and 
RH. A weak negative correlation (r = -0.087, P < 0.01) was detected, suggesting a 
slight inverse relationship between PM1 and AM. A weak negative correlation  
(r = -0.233, P < 0.01) was found, indicating a minor inverse relationship between 
PM1 and RH. A weak positive correlation (r = 0.086, P < 0.01) was observed, 
reflecting a minor association between TVOC and temperature. A weak negative 
correlation (r = -0.183, P < 0.01) was detected, suggesting a slight inverse 
relationship between TVOC and AM. A weak negative correlation (r = -0.203,  
P < 0.01) was found, indicating a minor inverse relationship between CO2 and AM.  
A weak negative correlation (r = -0.172, P < 0.01) was observed, reflecting a slight 
inverse relationship between NOP and temperature. 
 

Table 4. Spearman correlation coefficients among indoor air quality parameters. 

  AT AM RH PM10 PM2.5 PM1 HCHO TVOC CO2 NOP 

AT 1.000 0.204** -0.414** -0.085* -0.005 0.008 0.325** -0.086* -0.423** -0.172** 

AM  1.000 0.036 -0.117** -0.096* -0.087* 0.031 -.0183** -0.203** -0.027 

RH   1.000 -0.232** -0.225** -0.233** -0.425** -0.516** -0.364** -0.028 

PM10    1.000 0.919** 0.916** 0.312** 0.453** 0.474** 0.279** 
PM2.5     1.000 0.994** 0.361** 0.383** 0.412** 0.197** 

PM1      1.000 0.371** 0.375** 0.409** 0.194** 

HCHO       1.000 0.379** 0.206** -0.056 

TVOC        1.000 0.553** 0.256** 

CO2         1.000 0.233** 

AOP                   1.000 

Note: **. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
NOP = Number of People 
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Predictive model for CO2 concentrations in boat manufacturing facility 

In this study, Multilayer Perceptron Neural Network (MLP-NN) models were 
developed to predict the ventilation performance indicator of carbon dioxide (CO₂) 
within a boat manufacturing facility. The models were constructed using the 
Levenberg-Marquardt (LM) training algorithm, a widely recognized and effective 
method for training neural networks due to its efficiency in handling non-linear 
relationships and providing faster convergence. The performance of the MLP-NN 
models was rigorously evaluated during both training and validation phases. The 
correlation coefficient (R), which measures the strength and direction of the linear 
relationship between the observed and predicted CO₂ levels, was used as a key 
performance metric and the results are tabulated in Table 5. During the training 
process, the R-values achieved by the models ranged from 0.7556 to 0.8725. These 
values indicate a strong positive correlation, suggesting that the models were able to 
accurately learn the underlying patterns in the training data and predict CO₂ 
concentrations with reasonable accuracy. In the validation phase, where the models 
were tested on unseen data, the R-values ranged from 0.6798 to 0.8163. While 
slightly lower than the training phase, these values still represent a good level of 
predictive accuracy, demonstrating that the models generalize well to new data. The 
Mean Squared Error (MSE) was utilized to quantify the prediction error of the MLP-
NN models. MSE provides a measure of the average squared difference between the 
observed and predicted values, with lower values indicating better model 
performance. During training, the MSE values ranged between 0.0048 and 0.0087. 
These low error margins indicate that the models were able to closely approximate 
the actual CO₂ levels during the learning process. During validation, the MSE values 
varied between 0.0010 and 0.0108. Although there was a slight increase in error 
compared to the training phase, the results remained within an acceptable range, 
reflecting the models’ robustness and reliability in predicting CO₂ levels even on new 
data. To determine the most effective neural network structure, various 
configurations were tested by adjusting the number of neurons in the hidden layer. 
After extensive experimentation, the optimal architecture was found to consist of 8 
input neurons, 15 hidden neurons, and 1 output neuron, denoted as an 8:15:1 
structure. This configuration provided the best balance between complexity and 
performance, enabling the model to predict CO₂ concentrations with an accuracy of 
87.25% during training, accompanied by a minimal prediction error of 0.0048 ppm. 
When applied to validation data, the model maintained a high accuracy of 81.63%, 
with the error reduced to as low as 0.0064 ppm. These results confirm that the 
selected architecture is well-suited for predicting CO₂ levels in the context of the boat 
manufacturing facility. Based on the trained model, a prediction algorithm was 
established to facilitate the estimation of CO₂ levels in similar industrial 
environments. The derived formula is expressed as: CO2=0.75× (ObservedCO2) 
+0.074. This algorithm is straightforward and can be easily applied to predict CO₂ 
concentrations, thereby aiding in the optimization of indoor ventilation systems. It is 
particularly useful for enhancing air quality management within the studied facility 
and in other environments with comparable characteristics, especially in the boat 
manufacturing industry.  Figure 3 illustrates the alignment between the observed and 
predicted CO₂ concentrations within the boat manufacturing facility. The observed 
values were measured directly from the facility, capturing the actual CO₂ levels 
during various indoor activities. The close correspondence between the two sets of 
values indicates the model's accuracy and reliability in forecasting CO₂ concentrations 
as in Figure 3, highlighting its potential as a valuable tool for real-time monitoring 
and ventilation management in similar industrial settings. In this figure, we present 
a side-by-side comparison of the observed CO₂ concentrations and the predicted 
values generated by the model. The data demonstrates a near-identical pattern 
between the two sets, with minimal deviations observed at different points in the 
measurement period. This alignment between the observed and predicted values 
reflects the model’s ability to closely replicate actual conditions, thereby supporting 
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the conclusion that the model is both accurate and reliable in forecasting CO₂ levels. 
The strong correspondence also suggests that the model captures the key dynamics 
influencing CO₂ concentrations in the studied environment, further validating its 
effectiveness as a predictive tool. The development of these MLP-NN models 
represents a significant advancement in the predictive monitoring of indoor air quality 
within industrial settings. By accurately forecasting CO₂ levels, the models provide 
valuable insights that can be used to optimize ventilation strategies, ensuring a 
healthier and more productive working environment in boat manufacturing facilities 
and beyond. 

Table 5. Modelling and execution for CO₂ prediction in the boat manufacturing facility. 

Neuron 
Number 

Training Validation 

   R    MSE Output    R    MSE Output 

1 0.7556 0.0087 Y=0.56X+0.130 0.7641 0.0076 Y=0.62X+0.110 
2 0.8069 0.0074 Y=0.63X+0.100 0.7568 0.0072 Y=0.65X+0.100 
3 0.8281 0.0060 Y=0.68X+0.094 0.7215 0.0010 Y=0.51X+0.140 
4 0.8036 0.0075 Y=0.58X+0.130 0.6996 0.0091 Y=0.56X+0.130 
5 0.8119 0.0067 Y=0.65X+0.100 0.8015 0.0073 Y=0.68X+0.110 
6 0.8371 0.0060 Y=0.69X+0.088 0.7467 0.0084 Y=0.6X+0.110 
7 0.8094 0.0062 Y=0.65X+0.100 0.8007 0.0085 Y=0.62X+0.110 
8 0.8349 0.0054 Y=0.69X+0.089 0.7425 0.0108 Y=0.52X+0.140 
9 0.8220 0.0065 Y=0.67X+0.093 0.8006 0.0068 Y=0.67X+0.095 
10 0.8193 0.0065 Y=0.67X+0.097 0.7910 0.0075 Y=0.68X+0.078 
11 0.8561 0.0051 Y=0.73X+0.007 0.7640 0.0089 Y=0.64X+0.100 
12 0.8401 0.0058 Y=0.68X+0.093 0.6798 0.0011 Y=0.55X+0.130 
13 0.8579 0.0053 Y=0.73X+0.076 0.8054 0.0066 Y=0.70X+0.086 
14 0.8352 0.0059 Y=0.71X+0.078 0.7532 0.0015 Y=0.69X+0.079 
15 0.8725 0.0048 Y=0.75X+0.074 0.8163 0.0064 Y=0.67X+0.087 
16 0.8200 0.0066 Y=0.68X+0.078 0.7383 0.0095 Y=0.66X+0.090 

Y=Predicted CO2 (ppm); X=Observed CO2 (ppm) 
 

Figure 3. Comparison of observed and predicted CO₂ concentration values. 
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DISCUSSION 

Indoor pollution sources can significantly impact workers' comfort levels. 
Factors influencing this include the amount of pollution entering the indoor 
environment, the presence of indoor activities, and the levels of various chemical 
parameters (Kalimeri et al., 2019). Research shows that buildings with an 
indoor/outdoor (I/O) ratio greater than 1.2 typically have notable indoor pollution 
sources (Deng et al., 2017). This implies that using static I/O ratios can simplify 
understanding different environmental modes within buildings, such as how 
mechanical ventilation is used, the extent to which windows can be opened, the 
layout of internal partitions, and ongoing indoor activities. Measuring I/O ratios over 
time helps assess their variability under different conditions and the significance of 
internal sources. Exposure to indoor Total Volatile Organic Compounds (TVOCs), 
including toluene, poses health risks. The boat manufacturing industry emits TVOCs, 
a group of chemicals that can evaporate into indoor air at room temperature (Mu et 
al., 2025). Toluene is found at higher levels indoors than outdoors, leading to most 
exposure occurring within enclosed spaces (Wang et al., 2024). Various industrial 
products, such as paints, adhesives, automotive products, and personal care items, 
often release toluene, which is commonly used as a solvent (Pelletti et al., 2018). 
The impact of humidity and temperature on formaldehyde and TVOC emissions 
remains unclear due to the complex and not well-understood emission mechanisms. 
A comprehensive study was conducted to investigate how temperature and humidity 
affect the release of volatile organic compounds (VOCs) from fiberglass. The findings 
revealed that variations in temperature and relative humidity do not significantly 
influence the emission trends of formaldehyde and VOCs from fiberglass and wood 
panels used in boat construction (Zhou et al., 2019). 

Air movement can significantly aid in dispersing contaminants such as 
particulate matter (PM). It helps to spread pollutants that are concentrated in specific 
areas, thereby reducing the intensity of pollutants in any single location (Deng and 
Gong, 2021). However, factors like furniture placement can obstruct air circulation, 
leading to higher concentrations of particulate matter in certain areas (Maung et al., 
2022). While long-term measurements of temperature and CO2 levels are crucial for 
understanding the Earth's carbon cycle, they have limited impact on indoor air 
quality. This is because indoor air quality is more directly affected by CO2 emissions 
from occupants and temperature management through building ventilation (Hou  
et al., 2021). CO2 and TVOC concentrations varied significantly in each room based 
on occupancy and activities, with a strong correlation observed, particularly in areas 
contaminated with chemical substances. Human activities and material use are major 
factors influencing TVOC levels, as certain VOCs are more likely to be emitted during 
active periods when workers are present (Tzoutzas et al., 2021). Frequent use of 
cleaning products, disinfectants, and industrial processes in these environments 
contributes significantly to indoor VOC levels and has a strong relationship with CO2 
concentrations (Baudet et al., 2021). To improve indoor air quality and reduce 
pollutant levels, it is recommended to enhance ventilation through methods such as 
opening windows or installing mechanical ventilation systems (Fromme et al., 2019; 
Saleem et al., 2022). 

Exposure to indoor pollutants is significantly higher compared to outdoor 
environments, largely due to the accumulation and internal sources of these 
contaminants (Stratigou et al., 2022). Fine particulate matter (PM) such as PM1, 
PM2.5, and PM10, which can be inhaled, poses varying risks based on particle size 
(Radarit et al., 2024). PM10 particles, being larger, are more likely to deposit on the 
surfaces of the upper airways in the respiratory tract. Conversely, PM2.5 particles, due 
to their smaller size, can penetrate deeper into the lungs, reaching the lower regions 
and depositing on the surfaces of these deeper airways (Madureira et al., 2020). The 
deposition of these particles in the lung can lead to a range of health issues. Particles 
that settle on the lung surfaces have the potential to cause inflammation and damage 
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to lung tissues, contributing to respiratory problems and other health concerns 
(Olesiejuk et al., 2023). 

The developed MLP-NN model uses total volatile organic compounds (TVOC), 
respirable suspended particulate (RSP), formaldehyde (HCHO), temperature, air 
movement, and relative humidity (RH) as inputs to predict carbon dioxide (CO₂) 
levels. This input-output relationship allows the model to assess environmental 
factors that influence CO₂ concentration, providing insights for better indoor air 
quality management in the facility. A study conducted by Kim et al. (2020) 
highlighted the high performance of CO₂ prediction models developed using ANNs. 
In this study, the model demonstrated an exceptional ability to accurately predict 
indoor CO₂ levels, achieving a relative error of less than 5%. This level of accuracy 
underscores the potential of ANNs in maintaining precise control over indoor air 
quality, ensuring that CO₂ concentrations remain within safe limits, and reducing the 
risk of poor ventilation-related health issues. Further supporting the utility of ANNs, 
Taheri and Razban (2021) explored the application of the Multilayer Perceptron (MLP) 
model in predicting volatile CO₂ behavior. Their findings revealed that MLP is 
particularly effective in scenarios where demand-controlled ventilation (DCV) is 
implemented. In buildings with variable occupancy rates, where CO₂ levels can 
fluctuate significantly, the ability of MLP to accurately predict CO₂ concentrations 
allows ventilation systems to adjust in real-time. This not only ensures optimal air 
quality but also contributes to significant energy savings by avoiding unnecessary 
ventilation when occupancy is low. The findings of Taheri and Razban (2021) are 
further corroborated by Kallio et al. (2021), who identified machine learning methods, 
particularly the MLP, as powerful tools for forecasting indoor CO₂ concentrations. 
Their research demonstrated that by accurately predicting CO₂ levels, MLP models 
could enhance the energy efficiency of buildings. By optimizing ventilation based on 
predicted CO₂ levels, energy consumption is reduced, leading to lower operational 
costs. Moreover, maintaining appropriate CO₂ concentrations contributes to the 
overall well-being of occupants, as proper ventilation is closely tied to indoor comfort 
and health. 

In a boat manufacturing facility, CO₂ levels can be influenced by a combination 
of environmental factors such as TVOC, RSP, HCHO, temperature, air movement, and 
relative humidity. These factors do not impact CO₂ in a straightforward, linear 
manner. Instead, they interact in complex ways that are difficult to model using 
traditional linear methods. The MLP-NN, with its multiple layers and non-linear 
activation functions, is well-suited to capture these complex interactions (Taheri and 
Razban, 2021). It can learn how changes in the input. For example, an increase in 
temperature or humidity affects CO₂ levels, even when these effects are subtle or 
involve multiple factors simultaneously. The MLP-NN is trained using historical data 
where the inputs (TVOC, RSP, HCHO, temperature, air movement, and RH) and 
corresponding CO₂ levels are known. During training, the network modifies internal 
parameters to reduce the discrepancy between predicted and actual CO₂ readings. 
During training, the MLP-NN recognizes patterns and correlations between inputs and 
CO₂ levels. Once trained, it may apply the learned knowledge to make accurate 
predictions on new data (Buratti and Palladino, 2020). The MLP-NN's hidden layers 
enable the model to translate the input data into more abstract representations, 
allowing it to capture the complicated connections between the inputs and the output. 
Each layer examines inputs to emphasize the most essential aspects for estimating 
CO₂. The network's capacity to include a hidden layer allows for greater flexibility 
when modeling complicated occurrences. This adaptability is critical when working 
with environmental data, where the connection between variables might be 
extremely nonlinear and impacted by a variety of interacting factors. Once trained, 
the MLP-NN can generate predictions based on new input data, even if the data differs 
somewhat from the training set. This capacity to generalize is critical in real-world 
applications because facility conditions might alter over time. The MLP-NN can adapt 
to varied situations and conditions within the facility, making it a valuable tool for 
forecasting CO₂ levels under diverse operating conditions (Martínez-Comesaña et al., 
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2021). The MLP-NN accurately predicts CO₂ based on inputs by modeling non-linear 
and complicated interactions between many environmental parameters. Learning 
from previous data creates a strong interaction that influences CO₂ levels, resulting 
in accurate and trustworthy forecasts for the research area. 

CONCLUSION 

This study explored the physio-chemical assessment of indoor air quality 
parameters and the forecasting of CO₂ ventilation performance using artificial neural 
networks (ANN) in a boat manufacturing facility. The findings highlight the critical 
role that indoor activities and inadequate ventilation play in influencing air quality 
within the facility. Specifically, elevated levels of total volatile organic compounds 
(TVOC), particulate matter (PM10, PM2.5, PM1), and formaldehyde (HCHO) were 
observed, exceeding acceptable limits due to processes such as sanding, cutting, 
painting, and adhesive application. The ANN model developed in this study, with a 
multilayer perceptron architecture optimized using the Levenberg-Marquardt 
algorithm, demonstrated high accuracy in predicting CO₂ concentrations based on 
input parameters like temperature, relative humidity, air movement, and chemical 
pollutants. The model's correlation coefficients and mean squared error (MSE) values 
during training and validation phases underscored its robustness and reliability in 
forecasting ventilation performance. The study's findings suggest that the ANN model 
can serve as an effective tool for monitoring and improving indoor air quality in similar 
industrial settings. By enabling real-time predictions of CO₂ levels, this model can 
guide adjustments in ventilation strategies, helping to maintain a healthier indoor 
environment and enhancing worker comfort and safety. In conclusion, this research 
provides valuable insights into the dynamics of indoor air quality in a boat 
manufacturing facility and offers a practical solution for mitigating the impacts of 
indoor pollutants through advanced predictive modeling. The adoption of such models 
could be crucial in other industrial contexts where air quality management is vital for 
occupational health and operational efficiency. 
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