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Pesticides have been the most often used substance in recent 
decades to protect agricultural goods from pests affecting farmers, 
especially in conventional agriculture. Pesticides are effective in 
preventing and removing pests. On the other hand, pesticides risk 
human health since they may be found in agricultural goods for an 
extended time. As a result, it is critical to have a robust analytical 
procedure in place to monitor pesticide residues in agricultural 
products. Chromatography, Raman spectroscopy, and Ultraviolet-
visible (UV-VIS) - Near Infrared (NIR) are methods used to identify 
pesticide residues, and each has benefits. Additionally, a cutting-edge 
technique called hyperspectral imaging has recently been employed. 
This review paper discusses the most current application of those 
approaches, combined with machine learning and chemometrics, in 
identifying pesticide residues in agricultural goods such as crops, 
vegetables, and fruits. The approach's basic principles, benefits, and 
drawbacks will be briefly addressed. Our findings indicate that those 
methods provide precise and stable results for identifying pesticide 
residues in agricultural products. However, most of those methods 
are possessed a high initial cost, complex processes, time-
consuming, which is inappropriate with the agricultural modern 
concept, especially related to smallholder farmers. Hence, shortly, a 
low-cost, portable, and highly accurate internet-connected device 
must be developed.   
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INTRODUCTION 

Food safety issues have raised global health concerns with frequent 
pesticides contamination of food products. Pesticides can harm the human body 
by damaging the digestive and respiratory systems as well as the skin, which can 
adversely effect human health. Eating pesticide-contaminated food is one of the 
main ways of coming into contact with pesticides (Xu et al., 2017). However, these 
effects range from short-term (e.g., skin and eye irritation, headaches, dizziness, 
and nausea) to chronic impacts (e.g., cancer, asthma, and diabetes) depending 
on several factors (Kim et al., 2017).Pesticides not only harm human health but 
also disrupts the surrounding environment. It has been estimated that less than 
0.1% of pesticides applied to crops actually reaches the target pest, the rest enters 
the environment haphazardly, which might directly expose the area, and affect 
non-target organisms (Arias-Estévez et al., 2008). In general, small amounts of 
pesticides may be left on agricultural products in a transparent layer after their 
application. 

Several practices have been applied to prevent agricultural products from 
being contaminated with pesticides, including organic farming, which can be 
implemented through open, semi-closed, or closed farming systems. In the 
conventional organic farming system, the farmers might apply pheromones to 
disturb pest mating cycles or use mechanical control such as control trapping to 
manage pests. However, these prevention techniques might not be effective 
against all pests, making the use of pesticides unavoidable. At the same time, the 
condition of semi-closed and closed farming systems is more conducive due to the 
use of isolation material, which suppresses the system's interaction with the 
surrounding ambient. Despite both farming systems being effective in preventing 
most pests, these techniques are not yet suitable for fruit trees, staple crops, and 
plants taller than 30 cm (Kozai et al., 2015). 

Therefore, the detection and discrimination of pesticide residues remain of 
great importance. Currently, chromatography methods are mostly used for 
dectecting pesticide residues, as they provide highly accurate and precise result. 
Although the outcome of this method is reliable, its use for in-situ analysis has 
been constrained by the initial cost, complex process, and time-consuming 
analysis (Liu et al., 2021). Furthermore, spectroscopy techniques such as Raman 
and UV-VIS-NIR spectroscopy have been deployed to assist in the discovery of 
pesticide residues on agricultural products. Pesticides can be easily identified 
based on their unique fingerprint features that are collected using spectroscopy 
techniques (Li et al., 2021). Recently, the Hyperspectral Imaging System (HSI) 
has been used to detect pesticide residues by extracting both spectral and spatial 
data from the product. This makes it possible to map the distribution of pesticide 
residues over the entire surface (Jun et al., 2019). 

Spectroscopy and HSI are approaching techniques that require 
chemometrics or machine learning methods to quantify the pesticide residue 
values. Once the equation is established, detecting pesticide residue in the future 
will become easier. The strategy of integrating computational methods can also 
be applied to chromatography techniques making the identification and 
classification of pesticide residues much easier and faster (Chaya et al., 2020). 

This work reviews the techniques of detecting pesticide residues in 
agricultural products using several methods such as; gas-chromatography-mass 
spectrometry (GC-MS), High-Pressure Liquid Chromatography (HPLC), Ultra 
Performance Liquid Chromatography (UPLC), Raman spectroscopy, UV-VIS-NIR 
spectroscopy, and Hyperspectral Imaging System (HSI). Furthermore, this study 
briefly discusses the application of  these methods with chemometrics or machine 
learning.   
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Application of chromatography methods for pesticide residues detection 
of agricultural product 

Basic Concept of Chromatography Methods 

Chromatography is a separation technique that involves applying a mixture 
of molecules  onto a surface or into the solid/fluid stationary phase (stable phase). 
The mixture is then separated from each other while moving with the assistance 
of a mobile phase. The separation is based on the differential distribution of the 
molecules between the mobile and stationary phases (Hage, 2018). Subtle 
differences in the partition coefficients of the compounds lead to different retention 
of the stationary phase and thus affect the separation. According to mobile phase-
type, the chromatography method divides into several phases such as gas (GC), 
liquid (LC), or supercritical (SFC). Whereas the stationary phase may be a liquid 
or, more usually, a solid (Ismail and Nielsen, 2010). Figure 1 shows the 
mechanism of chromatograph in general. The selection of chromatography type is 
typically adjusted to the characteristics of the test sample. 

 

Figure 1. The separation mechanism of a chromatographic system, 
demonstrated by using a column to separate two chemicals, A and B. 

 
Gas chromatography, commonly known as GC, is a technique that uses gas 

for the mobile phase and immobilized liquid or solid packed in a closed tube for 
the stationary phase. The basic principle of GC separation is based on the 
application of heat and is typically used to separate mixtures containing thermally 
stable, volatile compounds. These compounds are then separated based on several 
properties, such as boiling point, molecular size, and polarity (Blumberg, 2021). 
The GC method was also combined with other methods, such as Mass 
Spectroscopy (MS), resulting in a new technique called GC-MS. By combining two 
methods the advantages of each technique can be merged into a single form. The 
MS system assists the GC system in providing detailed structural information on 
most compounds (Stauffer, E. 2008). Therefore, the GC method is suitable for 
pesticide residue detection and gives accurate & precise results at the nanogram 
to microgram level (Vaye et al., 2022).  

Liquid chromatography (LC) is a chromatography technique that uses a liquid 
for the mobile phase. Separation takes place based on the interactions between 
the sample and the mobile and stationary phase. Furthermore the performance of 
the LC method was improved by combining the technique with a high-pressure 
(HPLC) and upgrading it to ultra-pressure system (UPLC). Instead of using the 
force of gravity, the HPLC solvent travels under high pressure obtained through a 
pump to overcome the pressure drop in the packed column. This system helps the 
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HPLC techniques to reduce the time separation. At the same time, the UPLC 
method increases the system's pressure and allows for smaller particle sizes in the 
column. Both techniques are used to detect pesticide residues because of the 
universality of the detection mode. 

 
Application of chromatography methods to detect pesticide residue 

The advantage of using chromatography for evaluating pesticide residue, 
including GC-MS, HPLC, and UPLC are precise and consistent  results obtained. 
This is particularly important given that the threshold for pesticide residues in 
agricultural products is extremely low. For Instance, Su et al. (2017) investigated 
chlorpyrifos and imidacloprid residues in Jujube fruit. According to the authors, 
the GC-MS method identified low residual chlorpyrifos and imidacloprid 
concentrations of 0.009 and 0.001 mg/g, respectively. In a similar GC-MS study, 
Walorczyk (2014) assessed multigrade pesticide residues (e.g., azoxystrobin, 
boscalid, dimoxystrobin, thiacloprid, etc.) in lupine, white mustard, and sorghum. 
The results exhibited 0.01, 0.05, and 0.5 mg/kg spiking levels. The author added 
UPLC testing as a method, which signified an average low standard deviation 
(RSD) of 7%.  

Additional examples of pesticide residue detection are presented below; the 
explained cases indicate that the chromatography methods served as techniques 
for controlling and monitoring pesticide residue. Chu et al. (2020) investigated 
39.32% of strawberries collected in the fields of Anhui Province, China, which 
contained pesticide residues. The GC-MS, HPLC-MS, and UPLC-MS methods were 
used, and at least two pesticides were found in 75% of the samples. In addition, 
many studies have been conducted around the world looking at pesticide residues 
in fruits and vegetables: such as in Argentina, with 56% of the 65% samples 
contained pesticides exceeding the Maximum Residue Limit (MRLs) value (Mac 
Loughlin et al., 2018), in Italy, more than 53% vegetables had pesticide residue 
(Santarelli et al., 2018), in China in total 66.7% of 78 samples were positive with 
pesticide residues above the MRL (Yang et al., 2016). Lastly, the conditions for 
successful control of pesticide residues were demonstrated by Brazil, which was 
presented by Jardim and Caldas (2012). In their study conducted between 2001 
to 2010, involving 13,556 samples, the authors found that only 3% of the samples 
contained pesticides above the MRL. Pesticide monitoring and control results could 
be used as a rationale for pesticide regulation in a given region, including the 
establishment of the maximum limit for each pesticide, field use guidelines, and 
manuals for removing pesticide residues. 

Cleaning contaminated agricultural products remain challenging since not all 
pesticide residues can be dissolved and removed in this process. In a particular 
study on Chinese kale conducted in Thailand, 85% of the sample with multiple 
pesticide residues was washed under running water. Consequently, profenofos 
residues were successfully reduced through running water treatment by 55%. 
However, water doesn’t apply to vegetables containing cypermethrin residues. 
Instead additional washing treatment with vinegar have to be employed 
(Wanwimolruk et al., 2015). In the tomatoes, handling with water could remove 
chlorothalonil and thiophanatemethyl to 85%, whereas tomatoes containing 
oxadixyl only lost 42% pesticide residue, from 0.35 mg/kg to 0.17 mg/kg (Kwon 
et al., 2015). The washing technique with running water is not effective on all 
pesticide residues. Although agricultural products can not be free from pesticides, 
at least the remaining pesticides are still safe if consumed by humans. Additionaly, 
the washing process requires extra time and incurs additional costs. Whereas if 
MRLs and pesticide recommendations are followed, the residual value of the 
pesticides will be partially lowered, which will cut down on the time and expense 
associated with cleaning up pesticide residues. 

Table 1 exhibits pesticide residue analysis using chromatography techniques 
on various agricultural products. The GC-MS method was more frequently used in 
pesticide residue assessment than other chromatography techniques as it has 
greater sensitivity and selectivity due to the long and narrow columns (Yang, 



 

Open access freely available online Nat. Life Sci. Commun. 2023. 22(3): e2023049 

 

5 Natural and Life Sciences Communications: https:// cmuj.cmu.ac.th 

2018). Additionally, the separation process is based on temperature and is suitable 
for volatile and semi-volatile pesticides. However, some pesticides exhibits low 
volatility and high polarity, which makes them unsuitable for direct analysis by GC 
method (Hogendoorn, 2006). Thus, the application of a corresponding liquid 
chromatograph is highly recommended. Moreover, the combined LC method with 
triple quadrupole (QqQ) and mass-spectrometry had simultaneously determined 
more than 50 pesticides (Blasco and Picó, 2007). 

 
Table 1. Pesticide residue levels in agricultural products using chromatography methods. 

Detection 
Method 

Class of Pesticide 
(Number of Pesticides) Agricultural Product Concentration 

(mg/kg) Ref 

GC-QqQ-MS/MS Multiclass Pesticide (180) Blackcurrant 0.001 – 2.04 (Walorczyk, 
2014) 

LC-MS/MS Multiclass Pesticide (30) Various tea leaves (4) 0.01 – 0.1 (Lozano  
et al., 2012) GC-MS/MS Multiclass Pesticide (56) 

GC-MS/MS Multiclass Pesticide (170) Avocado and almond 0.01 – 0.05  (Lozano  
et al., 2014) 

GC-MS Multiclass Pesticide (19) Vegetables (8) 0.008 – 1 

(Alamgir 
Zaman 
Chowdhury et 
al., 2013) 

GC-MS and  
LC-MS/MS Multiclass Pesticide (16) Fruits and vegetables 

(12) 0.02 – 1.32 (Jallow et al., 
2017) 

GC-MS/MS Multiclass Pesticide (14) Maize  0.04 – 0.1 (Facco et al., 
2015) 

HPLC Ethion and Imidacloprid Cucumber 0.867 – 1.207 (Leili et al., 
2016) 

HPLC-MS/MS Multiclass Pesticide (83) Vegetables, fruits, 
herbs, and spices (54) 0.007 – 3.02 (Kowalska  

et al., 2020) 

HPLC-DAD Multiclass Pesticide (21) Cabbage, lettuce, and 
tomato 0.002 – 0.317 (Diop et al., 

2016) 

LC-MS/MS Multiclass Pesticide (8) Oregon cannabis 
flower 0.14 – 3.5 (Maguire  

et al., 2019) 

UPLC-MS/MS Multiclass Pesticide (54) Crude Pollen 0.0066 – 4.516 (Tong et al., 
2016) 

UHPLC-MS/MS 
and GC-MS/MS Multiclass Pesticide (80) Vegetables (10) 0.003 – 0.5 (Ramadan  

et al., 2020) 

UPLC-MS/MS Multiclass Pesticide (43) Strawberry 0.002 – 2.5 (Wang et al., 
2022) 

GC-ECD,  
GC-PFPD, and 
GC-ITD-MS 

Dithiocarbamates Lettuce 0.002  (Pizzutti  
et al., 2017) 

GC-FPD Organophosphate Vegetables and fruits 
(17) 0.0003 – 0.1 (Polyiem  

et al., 2018) 

GC-MS 
Pyrethroid, 
Organophosphate, and 
Organochlorine 

Vegetables, fruits, 
fish, and fish feed 0.03 – 1.535 (Rahman  

et al., 2021) 

UHPLC-MS/ 
MS and LPGC-
MS/MS 

Multiclass Pesticide (49) Hemp and hemp 
products 0.0001 – 0.384 (Michlig  

et al., 2021) 

Note: LC: Liquid-Chromatography; GC: Gas-Chromatography; MS: Mass-Spectrometry; QqQ: Triple Quadrupole; DAD: Diode Array Detection; UP: Ultra-
performance; HP: High-Performance; ECD: Electron Capture Detector; PFPD: Pulsed Flame Photometric; ITD: Ion Trap Detector; FPD: Flame Photometric 
Detection 

 
Machine learning (ML) has recently been applied in many sectors, including 

chemistry. While chromatography methods can be coupled with machine learning, 
there are few works that discusses application of this approach. Machine learning 
implementation on pesticide residues is still relatively unknown, even though ML 
can improve the application for detecting unknown samples. The analysis of ML is 
necessary to extract meaningful biological data recorded by the chromatography 
method. 

Fernández-Albert (2014) outlined a computational chromatography workflow 
that includes sample preparation, chromatography data acquisition, data 
processing, statistical analysis, sample identification, and biological interpretation. 
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In chromatography methods, data processing typically involves signal filtering and 
peak picking, also known as peak detection. This stage is aimed to select  
the correlated features (sample signal) for ML data input (Zhang et al., 2009). 
Generally, Retention Time (RT) was used as data input for ML algorithms, besides 
mass-to-charge (m/z) and intensity data parameters (Zohora et al., 2019) 
For instance, Zohora et al. (2019) used RT in GC-MS in combination with 
Convolutional Neural Networks (CNN). The findings demonstrated that using CNN 
and Support Vector Machine (SVM) could classify breath samples with 100% 
accuracy for both algorithms. However, due to low specificity, the generated model 
predictions could not be used to estimate unknown samples during the training 
stage. Furthermore, the GC-MS method produces high-dimensional data 
containing noise; one sample can generate over 9 million high-resolution variables 
(Skarysz et al., 2018). It is required for more intense data pre-processing, 
reducing data outliers, and preserving essential data. 

The qualitative and quantitative algorithms were coupled with the HPLC-
Diode-Array Detection (DAD) method to predict phytochemical compounds.    
The calibration curve was constructed by combining absorbance peak areas from 
11 different isoquercitrin concentrations ranging from 0 to 1000 ppm. Then, the 
ANN, SVM, and Adaptive-neuro Fuzzy Inference System (ANFIS) were employed 
to generate model predictions. The ANFIS algorithm held the best model prediction 
with a coefficient determination (R2) of 0.9998 and root-mean-squared error 
(RMSE) of (0.0002). The generated model was able to estimate the value of the 
unknown sample given inputs such as the concentration of the standard, 
composition of the mobile phases, and pH value (Usman et al., 2021). 

Chromatography data could be employed in supervised and unsupervised 
algorithms, such as Principal Component Analysis (PCA), Hierarchical Clustering 
(HCA), etc. Furthermore, Volatile Organic Compound (VOC), known as 
“volatilomics”, has been used as a way to determine food fingerprinting as 
demonstrated by Lytou et al. (2019). These compounds can be evaluated using 
the GC method as well. The VOCs profile of walnut oils was assessed for the 
classification between conventional and organic walnut oils. In the result section, 
if was found that the HCA algorithm successfully grouped conventional farming 
walnut together with organic farming walnut. At the same time, 72.3% of the data 
variance could be explained by the PCA algorithm's first two Principal Components 
(PC). The HCA and PCA algorithms were created using each walnut's RT and the 
peak areas as the primary data (Kalogiouri et al., 2021). In addition, a research 
conducted by Barberis et al. (2022) emphasized a new non-invasive method for 
in-situ sampling of apple cultivars employing GCxGC-MS devices and successfully 
classified six apple cultivars using the PCA algorithm. The untargeted analysis 
using GCxGC-MS discovered the pesticide residues contained in the sample. 
Unfortunately, the author only used the PCA algorithm to classify apple cultivars 
and did not perform the computational process of the pesticide detection. Table 2 
shows the model prediction establishment using machine learning based on 
chromatography data. 

Implementing machine learning in chromatography has improved unknown 
samples' classification and determination process. There was a promising result 
for combining both methods (Table 2).However, in order to achieve high accuracy 
and precise model prediction, it is important to perform the feature selection 
process correctly and identify the most important variables. Furthermore, this step 
strongly connects with dimensionality reduction, which removes irrelevant and 
redundant data, leading to a small error (Khalid et al. 2014). Feature selection can 
be done automatically or manually.   
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Table 2. The application of chromatography methods coupled with machine learning. 

Detection 
Method Matrix Algorithm Model Evaluation Ref 

GC-MS 

Metabolomics 
monitoring through 
human breath 
diagnostics 
(Medicine field) 

ChromAlignNet 
(Deep Learning) 

Accuracy ~ 1 and 0.85 
(for simple data sets and 
very complex data sets, 
respectively) 

(Li and Wang, 
2019) 

GC-MS 

Trimethylsilyl 
Derivatives of 
Metabolites (Medicine 
field) 

SVM, ANN, DNN, 
CNN, and RF 

Accuracy of SVM: 
86.7% and error ± 3%. 
(Unstable model prediction 
due to true positive 
classification only shows 
at ± 30%) 

(de Cripan  
et al., 2022) 

GC-MS Essential Oils (Natural 
Sciences) RF 

Predictability Accuracy: 
98% and OOBE: 2.28 ± 
1.44% 

(Lebanov  
et al., 2020) 

HPLC Oligonucleotides SVR and LM Accuracy of SVR: 0.999 
and RMSE 0.076 

(Enmark  
et al., 2022) 

LC 

Chromatography 
Conditions for 
Purification in 
Organic Synthesis 

FFNN, CNN, and 
LSTM 

Accuracy of LSTM: 
0.950 ± 0.001 (For one 
solvent) and 0.982 ± 
0.001 
(For two solvents) 

(Vaškevičius 
et al., 2021) 
 

 
A Convolutional Neural Network (CNN) was used to find precise peak 

detection (feature selection). The CNN algorithm divided the LC-MS data into three 
classes: class 1 – noise, class 2 – one or more peaks, and class 3 – uncertain 
peak. In Figure 2, class 2 was picked as the data representative and played a role 
as data input for ML. Class 1was considered as irrelevant data with the sample, 
lowering the quality of the prediction model. Meanwhile, signals of class 3 were 
too noisy, tiny, or odd to be assigned to a peak. This group contained a peak but 
required particular attention from an expert (Melnikov et al. 2020).  

 
Figure 2. ROI examples from each Class 1 ROIs are classed as noise; Class 
2 ROIs are classified as one or more peaks, and Class 3 ROIs are defined 
as uncertain peaks. The blue and orange fill reflect the highest integration 
areas. 
 

Besides the benefit of chromatography methods, these methods have 
disadvantages. One of the apparent downsides is the amount of data generated, 
which causes a problem in handling the data. Excessive data elevates the 
predictive model's complexity, lowering its performance and perhaps resulting in 
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overfitted or under-fitted predictions; furthermore, not all data obtained is 
relevant to the samples. Thus, ML or a chemometric approach is vital to interpret 
the data and categorizing each sample's fingerprint (Deconinck et al. 2013). 
Moreover, these methods are multistage sample preparation, which complicates 
the detection procedures, especially for common people, and negatively impacts 
the environment by leaving a large carbon footprint. It is noteworthy that the 
initial investment cost is high—between $15,000 and $22,000—and that ongoing 
maintenance expenses will be costly. (Jornet-Martínez et al. 2017). These 
drawbacks make the chromatography unsuitable for modern rapid assessment, 
which needs real-time monitoring. In addition, small-holder might have a hard 
time accessing these methods. 

Application of Raman spectroscopy for pesticide residues detection of 
agricultural product 

Basic concept of Raman spectroscopy 

Raman spectroscopy measures the relative frequency at which a sample 
scatters radiation. During the illumination time, the light will stimulate molecules 
in a tissue; some light might be reflected, absorbed, or scattered, and a small 
portion of the light will be emitted at a different wavelength by the molecules 
(Synetos and Tousoulis, 2017). This technique slightly differs from other 
spectroscopy methods, which utilize an actual frequency incident on the radiation 
light. Only a small amount of Raman scattering is contained in one incident light; 
most light constitutes Rayleigh scattering. The portion of Raman scattering 
radiation is approximately 1x10-7 of the scattered light (Bumbrah and Sharma, 
2016). 

The scattered light of inelastic (Raman scattering) has a different frequency, 
either lower or higher, from the incident radiation (hv0). A lower frequency of 
scattered radiation is called Stokes lines (hv0 – hv) because the scattered radiation 
has lost its initial energy equal to the molecular vibrations. While a higher 
frequency, known as anti-Stokes lines (hv0 + hv), has obtained energy equivalent 
to molecular vibrations (the energy difference between vibrational modes is 
denoted by hv) as shown in Figure 3 (John and George, 2017)(Shipp et al., 2017). 

 

Figure 3. Rayleigh and Raman scattering. 

Raman spectrophotometers are categorized as either dispersive or non-
dispersive. The components and measurement paths for both Raman spectroscopy 
are shown in Figure 4 (Yang and Ying, 2011). An interferometer is used in non-
dispersive Raman spectrophotometers, but a prism or grating is employed in 
dispersive Raman spectrophotometers (Bumbrah and Sharma, 2016). Significant 
Raman scattering can be acquired using the laser in the visible region. But 
simultaneously, a fluorescence signal also created in this area can interfere with 
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the Raman signal measurement. Besides that, dispersive Raman spectroscopy is 
a great technique for aqueous-phase sample detection. While acquiring high-
resolution spectra is still hard (Zhang et al., 2021). 

 

Figure 4. Schematic diagram of a) dispersive and b) Fourier transform 
Raman spectrophotometer. 

 
The Fourier Transform (FT)-Raman spectrophotometer employs a Michelson 

interferometer. This technique is one of the non-dispersive methods using an 
Nd:YAG laser (1064 nm) combined with either an InGaAs or liquid nitrogen–cooled 
Ge detector. This technique aims to quench Rayleigh and fluorescence signals and 
give a stable wavelength measurement. In addition, the operation of this method 
is more manageable, and the result shows a high spectral resolution with great 
wavelength accuracy (Yang and Ying, 2011). At the same time, the FT-Raman 
method is limited to testing at temperatures below > 2,500C, aqueous phase 
samples, and black samples since these compounds will mask the Raman signal 
(Kizil and Irudayaraj, 2018).  

Raman spectroscopy utilizes various detectors, including the charge transfer 
device (CTD), charge-injection device (CID), and charge-coupled device (CCD). 
However, the CCD detector is typically preferred as the capturing device for its 
advantageous features, such as low dark current and high sensitivity to Raman 
signals. These properties make it well-suited for detecting faint Raman signals and 
minimizing noise factors (Bumbrah and Sharma, 2016) (Shipp et al., 2017). 

Due to the low portion of Raman scattering, it is necessary to find a suitable 
wavelength; thus, a generated signal contains no discernible photoluminescence. 
As a result, the obtained Raman signal has no background and a remarkable 
signal-to-noise ratio. Three wavelengths provide minimal fluorescence whilst 
maintaining a comparatively high Raman intensity, such as 532, 785, and 1,064 
nm (Hara et al., 2018) (Tuschel, 2016). In order to get a specific wavelength, a 
laser is used as a light source in current Raman spectroscopy. Due to their highly 
monochromatic nature and high beam flux, lasers are a source of photons, and 
this light source is essential because the Raman effect is weak. The Stokes line is 
typically 1000 times weaker than the Rayleigh scattering component (Mohammed, 
2011). The development of Raman spectroscopy continues to be carried out to 
overcome the weak signal, so it is easier to detect, such as Surface-enhanced 
Raman-spectroscopy (SERS), Coherent anti-Stokes Raman spectroscopy (CARS), 
and Tip-Enhanced Raman Spectroscopy (TERS)) (John and George, 2017).  

SERS is a vibrational spectroscopy approach in which the sample is adsorbed 
on a colloidal metallic surface (silver, gold, or copper) to increase the strength of 
Raman signals (Bumbrah and Sharma, 2016). Thus, the SERS approach has 
excellent sensitivity for detecting pesticide residues and has become a rapid 
alternative method for evaluating pesticide contamination (Xu et al., 2017). 
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Application of Raman spectroscopy to Detect Pesticide Residue 

Applications of Raman spectroscopy are far-reaching in nanomaterials, 
covering the biological, chemical, and medical fields (John and George, 2017). 
Furthermore, Raman spectroscopy has been applied in agriculture, such as on 
fruits, vegetables, crops, meat, dairy, oil, and beverages, to detect alteration, 
adulteration, biochemical information, etc. (Yang and Ying, 2011). Additionally, 
Raman spectroscopy is an appropriate method for safety control, notably in 
identifying pesticide residues. 

Implementing one of the Raman spectroscopy kinds, known as dispersive 
Raman spectroscopy, without any enhancement for pesticide residue detection is 
challenging due to the weak naturally generated Raman signal. Thus, only a few 
works discuss its performance. Dhakal et al. (2014) proposed an innovative 
dispersive Raman spectrometer for pesticide residue detection on apple surfaces. 
The proposed design included a 785 nm laser excitation source, a CCD camera, 
and a rotational analysis of the entire sample surface. The result exhibited 6.69 
mg/kg pesticide residue on the apple surface within less than 4 s. Although this 
method has great potential, pesticide residue detection below 1 mg/kg still 
requires further development. 

Based on the findings of Dhakal et al. (2014), it could be concluded that 
identifying pesticide residues using dispersive Raman spectroscopy is ineffective 
for low-concentration detecting molecules, making it challenging to identify 
pesticide residue fingerprints. However, the necessity to detect pesticide residues 
in fruits and vegetables is generally at low concentrations. Therefore, improving 
the dispersive Raman spectroscopy technique's sensitivity and specificity is 
necessary. It has been shown that using a specific laser in conjunction with this 
technique reduces the impact of fluorescence while revealing the presence of 
pesticide residues. (Ranjan et al., 2014) (Bumbrah and Sharma, 2016). 

An approach using another basic Raman method, i.e., FT-Raman, can detect 
pesticide residues at low concentrations due to reduced laser-induced 
fluorescence. In research about pesticide residue detection over fruit and 
vegetable surfaces, it was declared that utilizing the FT-Raman method could 
identify pesticide residues on the sample surfaces. However, a specific light source 
with 1064 nm excitation must be deployed to suppress the fluorescence effect 
(Zhang et al., 2006). In another instance, a novel FT-Raman technique was 
developed as a quantitative measurement for Fenthion in an emulsifiable 
concentrate sample. The calibration curves were constructed using a Fenthion 
standard solution in xylene on the band areas of 2951, 1065, 661, and 604 cm-1. 
The result showed a Limit of Detection (LODs) and RSD at 0.14 – 0.36 M and 
0.4 – 6.8%, respectively. While wavelength 802 cm-1 was used to normalize the 
data to compensate for excitation energy fluctuations Armenta et al. (2005). as 
cited in Armenta et al., (2005)). 

According to Armenta et al., (2005), FT-Raman spectroscopy is undoubtedly 
an alternative to chromatographic detection methods. At the same time, low 
sensitivity and high LODs limits are problematic for detecting low pesticide residue 
concentrations. In line with the previous statement, apart from the poor sensitivity 
of the FT-Raman method, certain pesticides do not provide good Raman scattering 
or even do not have a Raman spectrum in all cases (Boyaci et al., 2015).  

Therefore, the SERS method has been employed to enhance the weak  
Raman signal. So, Raman spectroscopy becomes more sensitive for pesticide 
residues from low to high concentrations. The pesticide residue identification using 
SERS enhancement coupled with dispersive Raman spectroscopy demonstrated a 
low LODs value on average of 5.33 x 10-4 µM. Gold nanorods (Au NRs) were 
deployed to strengthen the Raman signal on thiram and thiabendazole residue on 
fruit surfaces (Hu et al., 2020). In another instance, D. Zhang et al. (2019) 
investigated pesticide residue on tea leaves and discovered the LODs of typical 
chlorpyrifos solutions at 10-10 M, resulting in great sensitivity. Meanwhile, the 
amount of pesticide residue found ranged from 1 x 10-4 to 0.287 mg/kg. 
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The interaction between adsorbed molecules and the surface of nanoparticles 
is critical to the effectiveness of the SERS method, which results in a low LOD. 
Furthermore, the most exploited nanoparticles in the SERS technique are gold 
(Au), silver (Ag), and copper (Cu). More than that, the physical properties of 
different substrates, such as sizes, shapes, and components, will have varying 
effects on the increment in Raman intensity. These differences in physical 
properties can largely affect "hot spots” on the substrate. The hot spots are 
discovered in the interstitial spaces between metal nanoparticles and can produce 
significant local field amplification due to local surface plasmon resonance (LSPR). 
The hot spots are surface plasmons that are highly localized and caused by sharp 
protrusions (e.g., rods, stars) (Yuan et al., 2012; Pang et al., 2016; Xu et al., 
2017). 

Jiao et al. (2019) designed a pure worm-like AuAg substrate to improve the 
SERS signal detection of apple pesticide residues. This substrate could help the 
SERS method lower its detection limit on thiram up to 0.03 ppm. Worm-like AuAg 
nanochain interconnected ultrafine on ~6.2 nm. In another substrate shape, 
Sivashanmugan et al. (2017) deployed nanoplasmonic Au/Ag/Au in the nanorod 
shape to detect some pesticides, such as cypermethrin, carbaryl, permethrin, and 
phosmet. The result showed a detection limit of 0.0035 (10-8 M). The obtained 
LOD of nanorod shape presented a much lower pesticide detection than a pure 
worm-like substrate, owing to the nanorod substrate having many angles, which 
could provide more “hot spots”. However, comparing performance between 
different substrates is difficult since numerous SERS substrates are created, and 
no standardised procedure exists. 

In order to detect chlorpyrifos (CPF) in soil, He et al. (2019) researched 
substrate size's effect on Raman signals. They utilized five different sizes of gold 
nanoparticles (Au NPs), including 11, 13, 14, 25, and 42 nm. The study found that 
deploying 42 nm Au NPs produced a noteworthy Raman signal due to the intense 
electric field force among the materials. It provided a limit of detection (LOD) of 
0.025 mg/kg.  

Au and Ag are the preferred substrates because of their benefits, such as 
low cost, simple preparation, and favourable enhancement than other materials 
(Xu et al., 2017), and are the most frequently used materials for detecting 
pesticides. Table 3 summarizes the application of the SERS method for pesticide 
residue detection in agricultural products. The SERS technique demonstrated its 
ability to reveal pesticide residue either inside or on the surface of the fruit  
(Figure 5). 

 
Figure 5. SERS Method in Pesticide Residues Detection (a) in liquid and 
(b) on the surface. 
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Table 3. Pesticide residue detection using SERS method in agricultural products. 

Agricultural 
Product Class of Pesticide Substrate LOD Ref 

Apple surface Omethoate and chlorpyrifos AuNPs 1.63 and 2.64 µg cm-2 (Chen et al., 
2018) 

Peach Thiacloprid, prefonofos, and 
oxamyl Au@Ag NPs 0.01, 0.1, and  

0.1 mg/kg 
(Yaseen et al., 
2019) 

Orange and 
apple Methyl parathion AuNR 1 µM (0.3 ppm) (Wu et al., 

2019) 
Apple and 
tomato 

Carbaryl, phosmet, and 
azinphos-methyl Au 4.51, 6.51, and  

6.66 ppm 
(Liu et al., 
2013) 

Apple Thiram AuNS 10-10 M (0.000035 ppm) (Jian Zhu  
et al., 2018) 

Fruits and 
vegetables (5) 

Parathion-methyl, 
triazophos, and phosmet. 

Snowflake-
like AuNP 

0.026 ng/cm2, 
0.031 ng/cm2, and 
0.032 ng/cm2 

(Huang et al., 
2020) 

Apple peel Acephate, cypermethrin, and 
tsumacide. Au/DW 

10-3 ng/cm2,  
10-3 ng/cm2, and  
10-4 ng/cm2. 

(Wang et al., 
2018) 

Adzuki Bean Paraquat AgNPs 0.8 µg/kg (Tsen et al., 
2019) 

Grape Difenoconazole Au@AgNPs 48 µg/kg (Wang et al., 
2019) 

Note: AuNP: Gold Nanoparticles; Au@Ag: silver-coated gold; NR: Nanorod; NS: Nanostar; DW: Dragonfly wing. 

 
Numerous studies have addressed improving the Raman signal using a 

variety of substrates and have successfully discovered pesticide residues below 
the MRL value. However, the reproducibility of results using the SERS method 
became its limitation, which referred to the SERS signal for each measurement 
(Yang et al., 2021). Pang et al. (2016) speculated that another reason for the low 
reproducibility came from the different Raman instrument systems, causing a 
variety of configurations. 

SERS has a lot of potential as a field detection method. Because of 
technological advances, the signal detector may now be miniaturized to the size 
of a hand, making this method more viable for field detection; the device is called 
a portable Raman spectrometer. However, most of the device was built by a 
company, and only a few works developed low-cost devices. A work conducted an 
experiment regarding hand-held and bench-top Raman spectrophotometers. 
Pesticide residues on basmati rice on-site, such as acephate, carbendazim, 
thiamethoxam, and tricyclazole, were assessed using a Raman spectrometer 
device. Due to environmental conditions, the results of the Raman signal intensity 
between bench-top and hand-held Raman spectrometers were quite different. 
Lab-scale Raman spectrometer had better accuracy, as indicated by the Raman 
intensity value, which only reacted to the characteristics of pesticides. Despite the 
noise signal, the hand-held Raman spectrometer could still provide a fingerprint 
of every pesticide. In terms of results, the detection limit of the hand-held Raman 
spectrometer was 0.61 ppb, higher than the lab method's 0.34 ppb. Even so, the 
LOD of the Raman hand-held spectrometer was still acceptable because it was far 
below the Basmati Rice MRL value of 10 ppb (Logan et al., 2022). 

More than that, a Raman spectrometer device was developed based on a 
smartphone. A smartphone-based Raman spectrometer was built with an easy 
user interface (UI). It could also be removed from the smartphone application list, 
which meant the Raman measurement did not disturb the normal function of the 
smartphone. The proposed method was combined with paper-based SERS chips 
and a 785 nm laser to obtain a notable intensity of Raman scattering. As a result, 
the device successfully detected crystal violet at concentrations of 10-2 M, 10-3 M, 
and 10-4 M. Unfortunately, the evaluation did not include a discussion of economic 
issues (Zeng et al., 2019). 

The SERS technique requires the user to prepare the substrate to be applied, 
which adds to the method's complexity for field measurements. The less 
preparation performed on the sample, the easier the measurement; accordingly, 
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a technique is needed to shorten the substrate's fabrication time. Kumar et al. 
(2017) designed an in situ measuring substrate based on AgNR coated with 
polydimethylsiloxane (PDMS). During the field measurements, the proposed 
substrate would be attached to the apple so that the portable Raman spectrometer 
could be operated immediately. The Raman intensity of AgNR embedded in PDMS 
was similar to that of the AgNR substrate. 

Pan et al. (2021) carried out research to develop an in-situ surface-enhanced 
Raman spectroscopy (SERS) method to detect pesticides (acetamiprid) directly, 
without the need for extraction. Pesticide residues on cabbage leaves had been 
effectively identified using silver-coated gold nanoparticles (Au@AgNPs) as a 
substrate, either through extraction or directly on the cabbage leaf. The detection 
limit values in the extracted and cabbage leaf samples were 0.08 g/mL and 0.14 
mg/kg, respectively. Therefore, the RSD value was 4.37 - 10.63%. The ease of 
sample pre-treatment was one of the critical benefits of the proposed method, 
which had tremendous potential for on-site and non-destructive detection. 

The SERS technique can identify various pesticide residues in agricultural 
products in certain cases. However, with a note, the detection object must be 
treated first. Identifying Chlorpyrifos (CPF) and 2, 4-Dichlorophenoxyacetic acid 
(2, 4-D) in apple peels produced positive findings, indicating that Raman intensity 
could display features at the relevant wavelength (Wang et al., 2022). The 
complex matrix remains unexplored despite much research on detecting mixed 
pesticide residues. According to Pang et al. (2016), it needs a lot of direct testing 
on field items since other unknown analytes easily disrupt Raman intensity. 

Nowadays, Raman data is combined with machine learning, such as 
chemometrics, ANN, and deep learning. Due to its selectivity for complex objects, 
ML might help the Raman spectrometer to distinguish each pesticide residue. 
Identifying pesticide residue with ML aid can be done in two ways; qualitative 
(classification) and quantitative (which reaches the detail value). 

Weng et al. (2019) established pesticide residue quantitative (PLSR (partial 
least square regression), SVM, and RF) and qualitative (SVM, K-nearest neighbors 
(KNN), and Naïve Bayesian (NB) and RF) model predictions on paddy irrigation 
water. Paddy water was treated with fonofos, phosmet, and sulfoxaflor pesticides 
in this case. The measurement was done using a portable Raman spectrometer 
and AuNRs as SERS’s substrate. As a result, the KKN algorithm was the most 
robust classification model with 100% accuracy in both the calibration and 
validation sets. Table 4 shows the quantitative result. 

However, Raman spectroscopy contains numerous spectra data, which need 
pre-processing steps to reduce uncorrelated information, especially for the 
portable Raman spectrometer. Zhu et al. (2018) tried detecting chlorpyrifos 
residues in tea using SERS method combined with chemometric models. 
Quantitative (table 4) and qualitative (PCA, BPANN, and KNN) were applied in this 
project pairing with three pre-processing methods: SNV, 1st derivative, and 2nd 
derivative. The KNN algorithm with the 2nd derivative pre-processing method, with 
an accuracy of 100%, was the most consistent classification model. In the 
comparison, the KNN with both SNV and 1st derivative method only reached 
99.12% of accuracy. 

To the best of the authors' knowledge, no study has been done to measure 
the solution of multigrade pesticides mixed such that ML can categorize based on 
each pesticide's fingerprint. Pesticides are commonly used in more than one type 
in the field. Uninformed prediction algorithms will struggle to differentiate each 
residue. 

Simple linear regression was employed as a straightforward approach to 
estimate (quantitative) pesticide residue on fruit quickly. For instance, applying 
SERS to discover Omethoate residue in peaches generated R2 values of 0.98289 
and 0.98 as assessment values based on standard solution and peach extract, 
respectively, using simple linear regression (Yaseen et al., 2018). However, the 
SERS method provides a vast number of spectra data, which sometimes needs 
data reduction to omit unrelated data without losing the original data essence. 
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Furthermore, since simple linear regression is limited to a specified wavelength, 
incorporating matrices with complicated fingerprints leaves the prediction model 
quite prone to noise and overfitting. Hence, chemometric and ML are more suitable 
for model establishment on the SERS method. 

Table 4. The application of raman spectroscopy methods coupled to detect pesticide residue 
with machine learning. 

Detection  
Method 

Agricultural 
Product Algorithm Model Evaluation Ref 

SERS Apple and tomato PLS 
R = 0.94 and 0.91 
Error = 1.41 and 0.83 

(Liu et al., 
2013) 

SERS Paddy Water PLSR, SVM, and 
RF 

R2c = 0.99952 
RMSEC = 0.27 

(Weng et al., 
2019b) 

SERS Tea 
PLS, GA-PLS, 
siPLS, and siPLS-
GA 

R2c = 0.97 
RMSEC = 0.25 

(Jiaji Zhu et 
al., 2018) 

SERS Tea PLS and SVM 
R2 = 0.97 and 0.98 
RMSECV = 2.34 and 1.35 

(Zhu et al., 
2021) 

SERS Rape Plants Leaf PLS 
R2c = 0.96 
RMSEC = 2.65 

(Lin et al., 
2018) 

SERS Rice PLS 
Rc = 0.9868 
RMSEC = 1.26 

(Huang et al., 
2015) 

SERS Wheat PLS 
R2c = 0.9885 
RMSEC = 1.02 

(Aheto et al., 
2022) 

SERS Peach PLSR and RFR 
R2c = 0.8622 and 0.9003 
RMSEC = 0.1193 and 0.1015 

(Du et al., 
2020) 

SERS Wheat PLSR, SVR, and 
RF 

RMSECP = 0.00735 
Recovery = 94.12 – 106.63% 

(Weng et al., 
2019a) 

SERS - CNN R2 = 0.999 (Zhang et al., 
2022) 

SERS - SVM, KNN, DT, 
and AdaBoost Accuracy = 92.46% (Sahin et al., 

2022) 
SERS: Surface-enhanced Raman spectroscopy; PLSR: partial least square regression; SVM: Support vector machine; RFR: Random Forest regression; GA: 
Genetic algorithm; si: Synergy interval; KNN: K-nearest neighbors; DT: Decision tress; AdaBoost: Adaptive boosting. 

 

Commonly, both the chemometric and ML algorithms are integrated with the 
pre-processing method. One of the PLS abilities is to reduce data dimensionality, 
which can be applied to spectral data information. Huang et al. (2016) exhibited 
the use of PLS as the main algorithm and cooperated with three pre-processing 
data algorithms: multiple scattering corrections (MSC), standard normal variate 
(SNV), and normalization. The prediction model based on the original spectrum 
had the lowest R2 value in this study, with a value of 0.9766. 

Meanwhile, applying the pre-processing algorithm increased the evaluation 
value to 0.9874 and 0.679 for R2c and RMSEC, respectively. In addition, the results 
of the prediction model with other pre-processing methods also gave excellent 
results, with R2 values of 0.9848 and 0.9867 for SNV and normalization, 
respectively. More than that, the estimation value of phosalone extracted from 
pakchoi showed an excellent recovery percentage, with a range of 94.68 – 
102.82%. This number indicated that the prediction model had reached the stage 
where it could accurately predict the value of phosalone with a low risk of 
underfitting or overfitting. Despite human and instrument errors, pre-processing 
is essential. 

Noteworthy, adequate data must be used to build prediction models in order 
to properly feed the prediction model created. In one case, the authors used a 
dataset of 14 samples to identify the presence of chlorpyrifos in pears, with R2 
values of 0.8622 for PLS and 0.9003 for RFR (Random Forest Regression) (Du  
et al., 2020). It should be emphasized that the dataset employed in the prediction 



 

Open access freely available online Nat. Life Sci. Commun. 2023. 22(3): e2023049 

 

15 Natural and Life Sciences Communications: https:// cmuj.cmu.ac.th 

model must be of high quality so that the prediction model does not overfit or 
underfit. 

Application of ultraviolet (UV), visible (VIS) to near-infrared (NIR) 
spectroscopy for pesticide residues detection of agricultural products 

Basic concept of UV-VIS-NIR spectroscopy 

UV, VIS, and Infrared (IR) spectroscopy have been widely employed as a 
non-invasive technique to reveal bio-information about agricultural objects. Thus, 
the user, in this case, farmers, can adjust the treatment to improve the quality of 
the matrix. Compared to the Raman and fluorescence methods, the UV, VIS, and 
IR methods are more straightforward since the three radiations have the most 
considerable portion in one incident light wave. Consequently, there will be fewer 
data interference, and measurements may be taken directly without further 
preparation of the objects or substrates. 

 There is a law concerning the fall of light in the aforementioned chapter. 
Most practical applications in the field rely on light transmittance or reflection. 
While the laboratory scale usually appoints absorbance mode. Field measurements 
typically include solid objects and are ideal candidates for data gathering with the 
reflection mode. The term "spectral reflectance" refers to the ratio of energy 
incident on a surface to energy reflected by it, measured as a function of 
wavelength. However, several factors affect reflectance value results, such as 
object surface roughness and texture, particle size and distribution, etc. (Picollo 
et al., 2019).  

 The visible region is responsible for pigment compounds, such as 
anthocyanins, chlorophylls, carotenoids, etc., (Makky and Soni, 2014). Hence, 
detecting pesticide residues at this wavelength is tricky because most pesticide 
residues on fruits and vegetables are colorless. Additionally, because most 
pesticides have double bonds in their chemical composition, moving the atoms 
demands a significant amount of energy. Thus, the UV spectrum will be more 
appropriate due to its high energy (A. De Caro, 2015). For example, organic acids 
and benzoic acids, one of the structural compounds in pesticides, have been 
detected at wavelength ranges of 235 nm to 335 nm (Yu et al., 2018). Additionally, 
pesticide residues might also be discovered at wavelengths close to the UV, around 
400 - 450 nm (Jamshidi et al., 2016). 

The foundation of UV-VIS spectroscopy is the molecules' outer valence 
electron transition, which produces an absorption spectrum of 200–780 nm. At the 
same time, IR can be divided into three sub-regions; Near-Infrared (NIR) of 780 
– 2,500 nm, Mid-Infrared (MIR) of 2,500 – 25,000 nm, and Far-Infrared (FIR) of  
2.5 µm – 1 mm. NIR absorption is linked to molecular vibration and oscillation of 
oxygen-hydrogen (O-H), carbon-hydrogen (C-H), carbon-oxygen (C-O), nitrogen-
hydrogen (N-H), and sulfur-hydrogen (S-H), particularly overtones and 
combinations of fundamental vibrations (Yu et al., 2018).  

A spectrometer usually consists of a light source (i.e., xenon, tungsten, or 
deuterium), a sample holder, a dispersion element, and a detector (i.e., 
photodiode array (PDA) or CCD) (A. De Caro, 2015). The placement of each 
component depends on the needs. Figure 6 shows a typical bench-top UV-VIS 
spectrometer diagram. In the portable version, the sample is placed at the end of 
the sequence diagram, and the light source and detector are oriented in the same 
direction using an optical fiber (reflectance mode). The dispersion element is 
placed close to the sensor in a portable spectrometer. Notably, stray light 
situations, which generate noise in the data, frequently impede the usage of 
portable spectrometers. As a result, this equipment is commonly used in 
conjunction with a probe to limit natural light interference.  
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Figure 6. UV-Visible spectrometer diagram. 

 
The components of the NIR method are nearly identical to those of the  

UV-VIS spectrometer method. However, a Fourier Transform (FT) technique for 
the NIR spectrometer exists. The FT-NIR type is a technology that employs an 
interferometer to generate modulated light. Interferometry is a technology that 
extracts information from the interference of superimposed waves (Nicolaï et al., 
2007). Furthermore, FT-NIR is utilized to solve the issues associated with 
conventional NIR. The benefits of FT-NIR include very high resolution, rapid and 
precise frequency determinations, simultaneous detection of all wavelengths 
concurrently, and higher signal-to-noise ratios. In addition, several kinds of NIR 
spectrometers are based on their monochromators, including scanning 
monochromators, PDA spectrometers, laser-based systems, and liquid crystal 
tubal filters (LCTF) (Kusumaningrum et al., 2017). 

 
Application of UV-VIS-NIR spectroscopy to detect pesticide residue 

The UV-VIS-NIR spectroscopy methods, as is well known, can be used to 
determine the internal condition of an object, and they are not limited to 
agricultural objects. The information acquired from the object will benefit personal 
and industrial purposes. Those wavelengths' third applications include freshness, 
plant health, fruit maturity level, quality, etc. (Theanjumpol et al., 2013; Makky 
and Soni, 2014; Husted, 2015; Hemrattrakun et al., 2021). Furthermore, the 
benefits of all three methods extend to the post-harvest stage, such as detecting 
defects, pesticide residues, and quality control during shelf life (Theanjumpol  
et al., 2014; Riza et al., 2017; Li et al., 2021; Riza et al., 2022). The performance 
of these three methods—bench-top or portable—for detecting pesticide residues 
in agricultural products was discussed in this paper, along with a brief discussion 
of their benefits and drawbacks. 

There were very few records of the detection of pesticide residues using the 
UV-VIS laboratory-scale approach. It is quite tricky to obtain pesticide fingerprints 
inside the visible area. Sahu et al. (2020) investigated the ability of a UV-Visible 
spectrometer and FTIR to detect the flonicamide insecticide in vegetables. The 
results of spectral acquisition exhibited that the highest absorbance occurs at a 
wavelength of 580 nm and a LOD value of 0.007 µg/mL. Even though the results 
showed a LOD value that could touch the trace level, the obtained wavelength 
value from the insecticide came from complex processes that took quite a long 
time. Thus, implementing the bench-top UV-VIS is not in accordance with the 
interests of the field, which requires speed in the process. In order to carry out 
the detection procedure quickly and correctly, intact samples are also needed to 
identify pesticide residues on agricultural products. 

In addition to the utilizing of visible spectrum, relatively few UV applications 
can still be observed. Using a bench-top UV spectrometer, Omer and Fakhre 
(2019) attempted to find pyriproxyfen and chlorothalonil residues in cucumber and 
cabbage. Based on the findings, this instrument could measure pesticide residues 
up to 0.131 mg/kg. The fact that the UV method might find pesticide residues 
below the MRL threshold indicated its sensitivity, according to the result. However, 
since the sample had to be produced in liquid form (destructive) and necessitated 
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several chemical solutions, thus, a lot of preparation was required in this study to 
detect a single sample. In another instance, the detection was carried out for 
pesticide residue (imidacloprid) in apple juice, orange juice, and peach juice. 
Although the detection limit was not specified in this study, it was possible to 
deduce that the UV spectrum could detect standard solutions at a concentration 
of 0.036 mg/mL and identify pesticide residue absorbance fingerprints at each 
concentration (0 to 10.29 mg/ML)(Ji et al., 2013). However, because of its great 
size, the UV device can not be carried freely, making it unsuitable for direct 
detection in the field. 

Satisfactory findings were obtained in an experiment to detect and measure 
the residual fungicide on lettuce intact using a hand-held spectrometer based on 
UV-VIS, according to Steidle Neto et al. (2020). The UV-VIS technique had a 
detection limit of 0.49 mg/kg and a quantification (LOQ) limit of 1.41 mg/kg. This 
result indicated that the portable UV-VIS spectrometer could detect pesticide 
residues on the object below the MRL threshold (non-destructively).  

Likewise, Ngo et al. (2022) developed a novel hand-held spectrometer by 
integrating an NSP32m-W1 nanolambda detector into a 3D design (Figure 7). This 
tool used the reflectance approach, covering the 380–840 nm wavelength range. 
Then the calibration data comprised 68 pesticide data, 54 fungicide data, and 50 
plant growth hormone data (evaluation parameters in Table 5). This cutting-edge 
hand-held spectrometer had a detection limit of 0.01 mg/kg for pesticide residues 
in bok choy, oriental mustard, and lettuce. Although the production cost of the 
device was not evaluated in this study, a rough calculation might be used to 
estimate that there were cost savings of 80%. The portable device’s operation was 
susceptible to influence from stray. Thus, a probe's help was necessary to lessen 
the interference. 

 

Figure 7. Schematic diagram of a novel portable UV-Vis spectrometer (1) 
lettuce leaf sample; (2) spectrometer holder; (3) spectrometer; (4) 
computer. 

 
At the same time, results from bench-top NIR reflectance spectroscopy used 

to evaluate the presence of pesticide residues in pepper were likewise satisfactory. 
In contrast to the UV-VIS method, the laboratory version of the NIR method is a 
non-destructive technique that may measure materials without undergoing any 
preparation, saving time and enabling the testing of a greater variety of samples 
(Sánchez et al., 2010). Despite being a quick procedure, the initial calibration of 
the NIR spectroscopy technique using a sample of known composition took a lot 
of time and resources (Yeong et al., 2019). As a result, the bench-top or portable 
NIR approach was paired with the use of computing to determine pesticide residue 
value. 

A silicon diode array makes the NIR method not require an InGaAs array, 
making it possible to miniaturize this method. The Field Spec 4 spectrometer is 
one of the portable NIR instruments (manufactured). Because of its compact size 
and ability to display accurate spectra readings, this device may be used to collect 
data immediately in the field. According to Dai et al. (2010) and Misal and 



 

Open access freely available online Nat. Life Sci. Commun. 2023. 22(3): e2023049 

 

18 Natural and Life Sciences Communications: https:// cmuj.cmu.ac.th 

Deshmukh (2016), the NIR portable device categorization value reached 93%. 
Despite the fact that silicon diode arrays are less expensive than InGaAs detectors, 
this sensor is well-known for its optimal wavelength operating below 1000 nm 
(Yeong et al., 2019). 

Furthermore, changes in temperature and humidity will have a significant 
impact on the results of the scans. These two elements may impact the NIR lab 
scale less, but using portable NIRs in the field will always get around this (Nicolaï 
et al., 2007). Aside from produced devices, developing equipment based on digital 
cameras that span the NIR-Red spectrum to detect pesticide residues on 
agricultural items was highly viable (Widjaja Putra and Soni, 2017). Hence, 
smallholders like farmers could trace pesticide residue on their farms. However, 
the proposed device based on a digital camera must still be assessed further for 
pesticide residue detection. 

Several gadgets combined visible and infrared spectrums to detect pesticide 
residues on fruits and vegetables—for example, diazinon residue detection in 
cucumber. The spectrometer findings revealed that the most significant energy 
absorption area was between 450 and 470 nm and between 950 and 1,000 nm. 
The proposed system predicted diazinon at 8.39 mg/kg, which was 1.03 higher 
than the reference method (GC analysis) (evaluation value in Table 5) (Jamshidi 
et al., 2016). Ishkandar et al. (2021) discovered pesticide residue on the cabbage 
as a whole, with more satisfying findings using the same method. The minimal 
value detectable with this approach was 0.018 mg/kg, making it a fairly robust 
method for identifying pesticide residues. The prediction model parameters are 
listed in Table 5. 

UV-VIS-NIR spectroscopy is not an indirect approach that requires 
multivariate calibration. Furthermore, the portable version of these three methods 
has issues with natural light, which might interfere with data collection (Menezes 
et al., 2009). Because field measurements are taken directly on things, they allow 
for interference from several unknown objects. Consequently, pre-processing the 
data is required to remove extraneous data. Table 5 shows the use of machine 
learning and chemometrics as algorithms to form a prediction model for the value 
of pesticide residues. 

Table 5. The application of uv-vis-nir methods to detect pesticide residue coupled with 
machine learning. 

Detection 
Method 

Spectral 
Range 

Agricultural 
Product 

Class of 
Pesticide Algorithm Model 

Evaluation Ref 

VIS-NIR+ 450–1,000 nm Cucumber Diazinon PLS 
Rcv = 0.91 
SECV = 
3.22 

(Jamshidi  
et al., 2016) 

UV-VIS+ 400-800 nm 

bok choy, 
oriental 
mustard, 
and lettuce 

Insecticides 
(3), 
fungicides, 
and plant 
growth 
hormones. 

SMLR 

R2 = 0.86 – 
0.98 
RMSE = 
0.12 – 2.11 

(Ngo et al., 
2022) 

VIS-NIR+ 500–940 nm Cabbage Deltamethrin PLS 
Rc2 = 0.98 
RMSEC = 
0.02 

(Ishkandar 
et al., 2021) 

FT-NIR* 800–2,500 nm 

Chinese 
Kale, 
Cabbage, 
and Chili 
Spur Pepper 

Profenofos PLSR 

Rc2 = 0.95, 
0.87, and 
0.96. 
SEC = 6.93, 
12,13 and 
6.11 

(Sankom  
et al., 2021) 

VIS-NIR* 400–2,500 nm Olive Diuron PLS Accuracy = 
85.9% 

(Salguero-
Chaparro  
et al., 2013) 

NIR 1250–2,500 
nm Pakchoi Cyhalothrin PCA, LDA, 

and KNN 
Accuracy = 
92% 

(Li et al., 
2018) 
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Detection 
Method 

Spectral 
Range 

Agricultural 
Product 

Class of 
Pesticide Algorithm Model 

Evaluation Ref 

VIS-NIR+ 350-2,500 nm Lettuce 
Leave Fenvalerate LVQ NN, 

and BP-NN 

Accuracy = 
98.36 and 
90.16% 

(Sun et al., 
2013) 

Transmittan
ce NIR* 950–1,650 nm Lettuce 

Leave 

Fenvalerate  
and 
Chlorpyrifos 

SVM Accuracy= 
99.16% 

(Sun et al., 
2018) 

VIS-NIR+ 350-1,800 nm Navel 
Orange Dichlorvos PSO-PLS Rc = 0.8732 (Xue et al., 

2012) 

VIS-NIR+ 350-1,100 nm Tomato Profenofos SPA-ANN 
Rc = 0.988 
RMSEC = 
0.141 

(Nazarloo  
et al., 2021) 

NIR* 800-2,500 nm Paddy Rice carbofuran PLS 
R2 = 0.87 
RMSEC = 
6.24 

(Rungchang 
et al., 2018) 

VIS-NIR+ 350-2,500 nm Cabbage 
Chlorpyrifos 
and 
Carbendazim 

PLSR and 
LS-SVM 

Rc = 0.9991 
RMSEC = 
1.39 

(Lu et al., 
2021) 

NIR+ 900 – 
1,700 nm Bok Choi Chlorpyrifos 

PLS-DA. 
SVM, and 
PC-ANN 

Accuracy = 
100% 

(Lapcharoen
suk et al., 
2022) 

FTIR+ 2,500 – 
14,500 nm Cocoa Beans Multiclass 

(4) PLSR Rc = 0.954 
SEC = 14.9 

(Villanueva 
et al., 2023) 

*: Bench-top; +: Portable; SMLR: Stepwise multiple linear regression; RMSECV: root mean square errors of calibration-validation; PLSR: Partial least 
square regression; PCA: Principal component analysis; LDA: Linear discriminant analysis; KNN: k-Nearest Neighbor; LVQ: Learning Vector Quantization; 
BP-NN: Back propagation neural network; SVM: Support vector machine; PSO: Particle swarm optimization; SPA: Successive prediction algorithm; ANN: 
Artificial Neural Network: LS: Linear regression 

In an experiment to identify boscalid and pyraclostrobin residues in 
strawberries, Yazici et al. (2020) discovered encouraging outcomes from applying 
the NIR technique. In this development, the authors created a prediction model 
using the PLS method, with calibration R values for the agents boscalid and 
pyraclostrobin of 0.89 and SEC values of 3.25 and 0.73, respectively. 
Unfortunately, it was apparent from the findings that the prediction model can 
only discriminate between low-mid-high values. According to Nicolaï et al. (2007), 
the RPD score in the strawberry research demonstrates that the prediction model 
can only make hazy predictions. Additionally, the strawberry author recommended 
creating a prediction model with more samples. 

Aside from other considerations, such as human and equipment 
imperfections, using the PLS method as a modeling technique and lowering data 
dimensionality is still insufficient for UV-VIS-NIR spectra data types with high 
amounts of data and noise. As a result, the PLS approach is frequently used with 
the pre-processing data method. The pre-processing data strategy boosted the R2 
value up to 0.84 in the investigation that exposed the chlorpyrifos-methyl residue 
in raw, brown, and milled rice (Rodriguez et al., 2021). Table 5 shows that the 
robustness model has improved. 

The PCA technique, in addition to PLS, can be employed to reduce redundant 
and noisy data. Consequently, the proposed model's speed, accuracy, and 
reliability might be improved. Because PCA is an unsupervised approach, another 
algorithm is required to create a predictive model. Hence, ANN is the best option 
because it can not limit the amount of data. However, the ANN will be practical for 
spectrum data because of its characteristics, such as fault tolerance, which is 
excellent (Mijwel, 2018). By integrating the PCA and ANN algorithms, Charles 
(2021) attempted to create a prediction model to estimate the residue of 
mancozeb and thiocyclam hydrogen oxalate (THO) on tomatoes. The spectra data 
ranging from 200 to 1,025 nm was utilized as input, with PCA reducing the quantity 
of data and providing a principal component (PC). The algorithm's new 
components retained the original data's core information. Consequently, for the 
residue mancozeb, the ANN algorithm had an outstanding Rc2 value of 0.98 and 
an RMSEC value of 0.02 ppm. The ANN error value outperformed the RF and SVR 
algorithms in the THO residue prediction model while having the same R2 value. 
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In addition, the author presented that the LOD values of UV, VIS, and NIR methods 
could reach 0.011 ppm for both residues. 

Computational techniques estimate pesticide residue values and categorize 
pesticide-containing and pesticide-free samples. By inputting VIS/NIR spectral 
data, Nazarloo et al. (2021) distinguished between fresh and pesticide-infected 
tomatoes using the PLS-DA algorithm and categorized the samples with 90% 
accuracy. Furthermore, the investigation of the surface of the Hami melon yielded 
a superior prediction result of 99.17%. The authors could better discriminate fresh 
Hami melon from pesticide-contaminated Hami melon using the 1D-CNN algorithm 
than conventional identification methods (i.e., PLS-DA and SVM). 

Overall, UV-VIS-NIR spectroscopy is reliable for identifying pesticide 
residues at both the bench-top and portable scales. The primary advantages of 
the scale laboratory are the stability and precision of the sample spectrum 
information, however, this approach is not ideal for field demands. As a result, the 
portable spectrometer's tiny size is better suited to practical purposes in the field. 
These three approaches have intermediate sensitivity, and selectivity generally 
remains a source of concern (Jornet-Martínez et al., 2017).  

Application of hyperspectral imaging for pesticide residues detection of 
agricultural product 

Basic concept of hyperspectral system 

The rationale for developing a hyperspectral imaging (HSI) system is to 
overcome the constraints of current spectroscopy and imaging approaches. 
Spectroscopy is a technique for determining an item's spectral properties due to 
its interaction with light. Meanwhile, the imaging system is a mechanism for 
obtaining spatial data. As a result, hyperspectral was derived from both 
approaches, and the data collected may be seen as a three-dimensional data cube, 
including both spatial and spectrum data (Figure 8). Even after the data collection 
process, the freedom to select the region of interest (ROI) is provided by getting 
information from every pixel (ElMasry and Sun, 2010). The main distinction 
between hyperspectral and multispectral image capture is the number of 
wavebands exploited during picture acquisition, with hyperspectral employing a 
narrow waveband throughout a contiguous wavelength range (Buckner et al., 
2016). 

 

Figure 8. Schematic diagram of hyperspectral image (hypercube data). 
 
The hyperspectral method is ideal for detecting pesticide residues since it 

covers a wide range of wavelengths (UV, VIS, NIR, SWIR, IR, etc.). Additionally, 
the impact of pesticide residues on the physical characteristics of objects may be 
assessed using spatial data. Since the method gathers both spatial data and a 
spectrum of data, identification may be performed immediately on the item 
without pre-treatment (non-destructive). Furthermore, there are three scanning 
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strategies in the hyperspectral method: point-scanning (whiskbroom), line-
scanning (pushbroom), and area-scanning (Figure 9). Point-scanning and line-
scanning are also referred to as spatial-scanning since they shift things from point 
to point or line to line. At the same time, area-scanning is also known as spectral-
scanning mode since this mode fixes objects in one location and then takes photos 
from one wavelength to another (ElMasry and Sun, 2010)(Buckner et al., 2016). 

 

Figure 9. Hyperspectral scanning mode a) the point-scanning method or 
whiskbroom, b) the line-scanning method or pushbroom, and c) the area-
scanning method. 

 
In general, the hyperspectral technique's essential components are the 

wavelength dispersion device, camera, light source, sample place, and computer. 
Commonly, it has an extra part called the translation stage in the sample place. 
However, the installation of these components is adjusted to the requirements of 
the chosen scanning technique. Wavelength dispersion devices are an essential 
component in generating different wavelengths of light. Several types of 
equipment include spectrographs, filter wheels, single-shot imagers, and so on 
(Qin, 2010). In addition, the most often used cameras in hyperspectral technology 
are CCD and complementary metal oxide semiconductor cameras (CMOS). Once 
the light interacts with the object and goes through the dispersion component, the 
camera will collect the light radiation into an electrical signal (ElMasry and Sun, 
2010). 

There are many different light sources, including Halogen lamps, light-
emitting diodes (LED), lasers, tunable sources, and others (Qin, 2010). The choice 
of light sources is in line with the spectrum region to be collected. Additionally, 
optimal lighting settings can help with data analysis and image processing, where 
the acquired data has minimal surface reflection, noise, or shadows. 

Application of Hyperspectral Imaging to Detect Pesticide Residue 
The HSI system is likewise an indirect method that necessitates calibrating 

the prediction model and validation of the standard method, just as UV-VIS-NIR 
or other spectroscopic methods. This process is like a double-edged sword, which 
is to endure the researchers in the early stages of establishing the calibration 
model. Then, pesticide residue detection will be relatively simple once the 
calibration and validation processes have been completed. 

For instance, L. Zhang et al. (2019) constructed a model prediction to 
calculate the residue of omethoate on the surface of wheat grains. This 
investigation separated 400 wheat grain samples into 4 big groups. Each group 
received a different dose of omethoate treatment (i.e., pesticide-free, 1:100, 
1:500, and 1:1,000). Using the HSI pushbroom mode, measurements were taken 
spanning the wavelength range of 866.4–1,791 nm after being left at 20°C for a 
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week. Then, three algorithms, such as decision trees (DT), KNN, and SVM, were 
employed with the help of several pre-processing methods to reduce noise. The 
results showed the SVM algorithm produced the best classification model with a 
value of 98.75%, where 395 out of 400 samples were successfully classified 
correctly.  

Undeniably, users require a massive storage space due to the volume of data 
that must be collected, and the HSI approach uses spatial and spectral data. 
Therefore, the data collected by HSI comprises object information, noise, and 
many redundant data. Thus, pre-processing data is necessary to lessen it. In 
addition, the HSI approach is well known for its multicollinearity problem because 
of the substantial quantity of information it can extract. The multicollinearity 
problem can be suppressed using multivariate analysis techniques but can not be 
eliminated (ElMasry and Sun, 2010; Jia et al., 2018). 

Noise reduction can be accomplished manually or with the use of pre-
processing procedures. Lu et al. (2017) manually eliminated the first and last 50 
data points with poor signal-to-noise (S/N) values. Furthermore, Zhan-qi et al. 
(2018) used the Multiple Scatter Correction (MSC) algorithm to decrease the noise 
in the data. Both experiments produced good accuracy values of >96% and >97%, 
respectively, using the whole spectrum. 

Alternatively, the feature selection technique can decrease noise and 
multicollinearity effects. This strategy eliminates irrelevant data by picking certain 
critical variables with the highest correlation, resulting in a more reliable prediction 
model. Research on the detection of pesticide residue on lettuce employed several 
algorithms to select variables that characterized the object of detection, including 
PCA, successive projections algorithm (SPA), and a combination of wavelet 
transform (WT) and Monte Carlo cross-validation algorithm (MD-MCCV). According 
to the WT-MD-MCCV algorithm selection findings, the prediction model with six 
input wavelengths had an Rc2 value of 0.983 and an RMSEC of 0.04 (Sun et al., 
2016). Applying feature selection, Jia et al. (2018) improved the apple surface's 
pesticide residue classification model. The LDA algorithm coupled with SPA feature 
selection produced the best results, with an accuracy of 100%, a 2% improvement 
over the usage of the full spectrum. Furthermore, one of the advantages of feature 
selection is that it reduces the complexity level of the prediction model. 

One of the issues preventing on-site measurements is the HSI instrument 
size. The HSI approach has the potential to be portable. Although many hand-held 
HSI devices have been developed, their application for detecting pesticide residues 
remains limited. The research was conducted to identify grape cyantraniprole 
residue using a portable HSI device. In this investigation, samples were taken 
from the planting region, and data was gathered there (Figure 10). The three 
treatments available were free-pesticide, a single dosage (70 ml per hectare), and 
a double dose (140 ml per hectare). The pesticide was sprayed directly onto the 
tree as part of the treatment. Then, the data collection period was chosen on a 
clear day between 11 AM and 3 PM. Data collection was done under natural light. 
The accuracy rating of 91.98% for the classification model created using field data 
demonstrated highly acceptable results (Mohite et al., 2017). 
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Figure 10. Portable hyperspectral experimental setup. 
 
Currently, pests are becoming more resistant to repeated pesticide 

applications. Farmers are forced to use many pesticides at once as a result of this. 
Only using a predictive model formed from one pesticide type will make the 
prediction results inaccurate. He et al. (2021). established a predictive model to 
classify three pesticides and their mixtures (i.e., λ-cyhalothrin (LCY), trichlorfon 
(TCF), phoxim (Pho), and a mixture of TCF and Pho). The 1D-CNN method created 
three classification models utilizing the three primary pesticide data. The TCF and 
Pho, mixed solution data were fed into the three primary models. The findings 
demonstrated that the LCY model could not identify the presence of combined 
pesticides, which was good because no mixture solution data was fed into the LCY 
model. At the same time, TCF and Pho models could identify the presence of mixed 
solutions with an accuracy of 87.2 and 70.1%, respectively. The author claimed 
that although the performance had to be improved for practical use, the promising 
prediction findings demonstrated the ability to identify pesticide combinations. 

Lastly, Jiang et al. (2017) visualized the distribution of pesticide residues in 
mulberry leaves using spatial HSI data. The quantitative pesticide residue value 
was first predicted using the developed prediction model. Furthermore, the 
predicted value was plotted against each pixel, with a different color for each 
residue level. From the results of visualization of the distribution of pesticide 
residues, observers could use it to find where the most frequent contamination 
occurs on agricultural objects. The pesticide residue distribution is shown in  
Figure 11. 

 

Figure 11. Pesticide residues distribution on mulberry leaves. 
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The visualization (Figure 11) will significantly impact if it is used to see the 
distribution of pesticide use in the field. Thus, pesticide use may be managed such 
that it does not exceed the safe level. Of course, monitoring pesticide levels in the 
field can not be accomplished with a bench-top HSI. Hence, field measurements 
are being conducted utilizing drones, robots, or other technologies, which are now 
referred to as Unmanned aerial vehicles (UAVs) or Unmanned ground vehicles 
(UGVs) (Dale et al., 2013) . 

DISCUSSION 

According to the reviewed journals, it is clearly found that those techniques 
can be used for pesticide residue detection on agricultural products. The authors 
collected the method's abilities in a structured manner, which was reviewed in 
several aspects, such as initial investment, accessibility, accuracy, maturity of the 
method, and portability (Figure 12). The higher the assessment value (5 points) 
in terms of investment costs, the worse the evaluation outcomes since the device 
is difficult to obtain. However, for other aspects, the greater the score, the better 
since it reflects the device's stability in detecting pesticide residues - and the value 
is near to 1, indicating that this component of the method is inadequate. 

 
 Figure 12. Spider web graph of reviewed method's aspects 

The initial cost of evaluated methods is closely related to the level of 
accessibility; the ease of access to tools for identifying pesticide residues increases 
with the ease of obtaining tools. Additionally, the accessibility of the method and 
the detection procedure is also connected. Because of the several processes that 
have to be completed before seeing results, chromatography procedures and 
Raman spectroscopy are highly complex methods. Meanwhile, the UV-VIS-NIR and 
hyperspectral systems are characterized as simple because of their ability to 
collect data on intact samples. In terms of accuracy, all reviewed methods provide 
highly reliable results. Overall, the detection of the chromatography method shows 
stable results in various studies that touch the microgram level. Meanwhile, other 
methods can provide detection results at the trace level as well. Still, in several 
evaluated cases, the detection limit area of UV-VIS-NIR and hyperspectral 
methods is above the MRL value.  

The chromatographic method's maturity level is very trustworthy, as was 
indicated by the numerous extant study outcomes. Raman spectroscopy and UV-
VIS-NIR spectroscopy are one level below. Both of these methods can identify 
pesticide residues in agricultural products. However, in order for the error rate and 



 

Open access freely available online Nat. Life Sci. Commun. 2023. 22(3): e2023049 

 

25 Natural and Life Sciences Communications: https:// cmuj.cmu.ac.th 

accuracy to reach the desired level, the database of the prediction model for 
Raman and UV-VIS-NIR methods must be expanded. Hyperspectral imaging 
technology, one of the novel methods, is now showing remarkable promise. 
Although this potential has been amply demonstrated, further study is still 
required because so few studies have used the HSI technique. Lastly, according 
to the research presented in the preceding part, chromatography is the only 
procedure that doesn’t have a portable form. The mobile version detection method 
is beneficial for field data collection. Although it still needs improvement and 
changes so that small-holders can use the device without difficulty.  

Chemical Measurement 

The reviewed methods have procedural processes to obtain chemical 
information about agricultural samples ranging from simple to complex. 
Chromatography and Raman spectroscopy are categorized as complex methods 
due to their preparation of the sample. The chromatography method sample 
underwent several extraction steps in a laboratory since their basic principle is 
based on the separation of volatile compounds. Furthermore, the Raman 
spectroscopy process is the same, there is a compulsory step to produce 
nanoparticles before measurements. While UV/VIS/NIR spectroscopy and 
hyperspectral imaging have simpler procedures since their capability to collect 
data from intact samples. Therefore, the complex preparation procedure will 
always be time-consuming, especially for those working in the field, whilst 
methods with simple procedures will cutting-off time. 

According to the reviewed works that have been discussed in the previous 
chapter, each method generates related chemical information about the sample 
and pesticide residue, which will later be used as input for ML. According to the 
reviewed research, chromatography methods provide data such as retention time 
(RT), mass-to-charge (m/z), and so on. Furthermore, the three techniques 
examined produced absorbance, reflectance, or transmittance values for the 
tested samples. Simply put, spectroscopy reveals Raman light values, whereas 
UV/VIS/NIR spectroscopy and hyperspectral imaging reveal Rayleigh light values. 
Additionally, hyperspectral imaging provides information other than spectral data, 
such as R, G, and B values, and so on. Therefore, the collected chemical 
information contains unique details data of sample and pesticide residue, which 
help in exposing unsafe agricultural products after the pattern recognition (ML) 
process. 

Machine Learning 

Our analysis has shown that ML and chemometrics offer great impacts in the 
vast majority of related work. However, when comparing the performance of ML-
based algorithms with other algorithms in each paper, the authors realized that it 
is difficult to compare apples to apples since each paper used different datasets, 
pre-processing techniques, metrics, models, and parameters to solve their 
problems. Furthermore, the algorithms' robustness could be compared using basic 
index parameters such as R2 and RMSE in the regression model and accuracy and 
misclassification in terms of % in the classification model. As a result, based on 
the indices of each work, we determined that algorithms such as PLS and SVM 
were most typically used in generating a regression model due to their capacity to 
minimize data dimensionality. While PCA, LDA, KNN, and SVM algorithms were the 
most frequent methods to establish a classification model. Furthermore, since all 
our reviewed methods possessed an enormous amount of data, hence, the neural 
network methods needed assistance from additional algorithms, such as PCA, SPA, 
etc., to reduce the input data.   
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CONCLUSION 

Pesticide substrate has been widely used in agriculture, which has a positive 
or negative impact. Hence, there is a need to develop and improve pesticide 
residue detection methods, so our foods are safe for consumption. This review 
paper briefly explains the implementation of those methods by describing the 
advantages and disadvantages of each technique. Thus, the selection process of 
the method to be used can be done carefully. Reviewing the methods from the 
viewpoint of 5 key factors—initial investment, accessibility, accuracy, method 
maturity, and portability—allows one to draw the conclusion that those are reliable 
and robust. Chromatography, Raman Spectroscopy, UV-VIS-NIR Spectroscopy, 
and hyperspectral imaging have been proven to detect pesticide residue at trace 
levels. In terms of field practices, farmers and small-holders can consider the 
hyperspectral method as a balanced technique in all aspects and pick the Raman 
Spectroscopy and UV-VIS-NIR Spectroscopy to avoid an enormous initial cost. 

However, future works must be addressed along with the shifting situations 
that continue to arise. The practical implementation of pesticide residue detection 
must be done shortly; it is rare to find papers discussing it. Moreover, it is 
becoming increasingly important to create strategies that may be used in the field 
due to the evolution of rising insect resistance levels. The development of a 
prediction model must take into account the condition of multiple pesticide 
residues in agricultural products, as pest resistance increases due to farmers' 
excessive and varied use of pesticides. 

Furthermore, in the near future, the concept of agriculture 4.0 will become 
increasingly widespread worldwide, requiring agricultural experts to develop 
internet-connected technology to support farmers with their work. Small-holders 
are eagerly anticipating the development of a technology that can accurately 
detect pesticide residue on-site threats, especially when it comes with a minimal 
initial cost. Lastly, since there is still a possibility to improve hyperspectral, Raman, 
and UV-VIS-NIR spectroscopy methods, allowing for updating features is currently 
regarded as inadequate. As a result, the following stage of development must 
include these factors while maintaining the benefits of the prior version.  
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	Food safety issues have raised global health concerns with frequent pesticides contamination of food products. Pesticides can harm the human body by damaging the digestive and respiratory systems as well as the skin, which can adversely effect human h...
	Several practices have been applied to prevent agricultural products from being contaminated with pesticides, including organic farming, which can be implemented through open, semi-closed, or closed farming systems. In the conventional organic farming...
	Therefore, the detection and discrimination of pesticide residues remain of great importance. Currently, chromatography methods are mostly used for dectecting pesticide residues, as they provide highly accurate and precise result. Although the outcome...
	Spectroscopy and HSI are approaching techniques that require chemometrics or machine learning methods to quantify the pesticide residue values. Once the equation is established, detecting pesticide residue in the future will become easier. The strateg...
	This work reviews the techniques of detecting pesticide residues in agricultural products using several methods such as; gas-chromatography-mass spectrometry (GC-MS), High-Pressure Liquid Chromatography (HPLC), Ultra Performance Liquid Chromatography ...
	Application of chromatography methods for pesticide residues detection of agricultural product
	Basic Concept of Chromatography Methods
	Chromatography is a separation technique that involves applying a mixture of molecules  onto a surface or into the solid/fluid stationary phase (stable phase). The mixture is then separated from each other while moving with the assistance of a mobile ...
	Figure 1. The separation mechanism of a chromatographic system, demonstrated by using a column to separate two chemicals, A and B.
	Gas chromatography, commonly known as GC, is a technique that uses gas for the mobile phase and immobilized liquid or solid packed in a closed tube for the stationary phase. The basic principle of GC separation is based on the application of heat and ...
	Liquid chromatography (LC) is a chromatography technique that uses a liquid for the mobile phase. Separation takes place based on the interactions between the sample and the mobile and stationary phase. Furthermore the performance of the LC method was...
	Application of chromatography methods to detect pesticide residue
	The advantage of using chromatography for evaluating pesticide residue, including GC-MS, HPLC, and UPLC are precise and consistent  results obtained. This is particularly important given that the threshold for pesticide residues in agricultural produc...
	Additional examples of pesticide residue detection are presented below; the explained cases indicate that the chromatography methods served as techniques for controlling and monitoring pesticide residue. Chu et al. (2020) investigated 39.32% of strawb...
	Cleaning contaminated agricultural products remain challenging since not all pesticide residues can be dissolved and removed in this process. In a particular study on Chinese kale conducted in Thailand, 85% of the sample with multiple pesticide residu...
	Table 1 exhibits pesticide residue analysis using chromatography techniques on various agricultural products. The GC-MS method was more frequently used in pesticide residue assessment than other chromatography techniques as it has greater sensitivity ...
	Table 1. Pesticide residue levels in agricultural products using chromatography methods.
	Note: LC: Liquid-Chromatography; GC: Gas-Chromatography; MS: Mass-Spectrometry; QqQ: Triple Quadrupole; DAD: Diode Array Detection; UP: Ultra-performance; HP: High-Performance; ECD: Electron Capture Detector; PFPD: Pulsed Flame Photometric; ITD: Ion T...
	Machine learning (ML) has recently been applied in many sectors, including chemistry. While chromatography methods can be coupled with machine learning, there are few works that discusses application of this approach. Machine learning implementation o...
	Fernández-Albert (2014) outlined a computational chromatography workflow that includes sample preparation, chromatography data acquisition, data processing, statistical analysis, sample identification, and biological interpretation. In chromatography ...
	The qualitative and quantitative algorithms were coupled with the HPLC-Diode-Array Detection (DAD) method to predict phytochemical compounds.    The calibration curve was constructed by combining absorbance peak areas from 11 different isoquercitrin c...
	Chromatography data could be employed in supervised and unsupervised algorithms, such as Principal Component Analysis (PCA), Hierarchical Clustering (HCA), etc. Furthermore, Volatile Organic Compound (VOC), known as “volatilomics”, has been used as a ...
	Implementing machine learning in chromatography has improved unknown samples' classification and determination process. There was a promising result for combining both methods (Table 2).However, in order to achieve high accuracy and precise model pred...
	Table 2. The application of chromatography methods coupled with machine learning.
	A Convolutional Neural Network (CNN) was used to find precise peak detection (feature selection). The CNN algorithm divided the LC-MS data into three classes: class 1 – noise, class 2 – one or more peaks, and class 3 – uncertain peak. In Figure 2, cla...
	Figure 2. ROI examples from each Class 1 ROIs are classed as noise; Class 2 ROIs are classified as one or more peaks, and Class 3 ROIs are defined as uncertain peaks. The blue and orange fill reflect the highest integration areas.
	Besides the benefit of chromatography methods, these methods have disadvantages. One of the apparent downsides is the amount of data generated, which causes a problem in handling the data. Excessive data elevates the predictive model's complexity, low...
	Application of Raman spectroscopy for pesticide residues detection of agricultural product
	Basic concept of Raman spectroscopy
	Raman spectroscopy measures the relative frequency at which a sample scatters radiation. During the illumination time, the light will stimulate molecules in a tissue; some light might be reflected, absorbed, or scattered, and a small portion of the li...
	The scattered light of inelastic (Raman scattering) has a different frequency, either lower or higher, from the incident radiation (hv0). A lower frequency of scattered radiation is called Stokes lines (hv0 – hv) because the scattered radiation has lo...
	Figure 3. Rayleigh and Raman scattering.
	Raman spectrophotometers are categorized as either dispersive or non-dispersive. The components and measurement paths for both Raman spectroscopy are shown in Figure 4 (Yang and Ying, 2011). An interferometer is used in non-dispersive Raman spectropho...
	Figure 4. Schematic diagram of a) dispersive and b) Fourier transform Raman spectrophotometer.
	The Fourier Transform (FT)-Raman spectrophotometer employs a Michelson interferometer. This technique is one of the non-dispersive methods using an Nd:YAG laser (1064 nm) combined with either an InGaAs or liquid nitrogen–cooled Ge detector. This techn...
	Raman spectroscopy utilizes various detectors, including the charge transfer device (CTD), charge-injection device (CID), and charge-coupled device (CCD). However, the CCD detector is typically preferred as the capturing device for its advantageous fe...
	Due to the low portion of Raman scattering, it is necessary to find a suitable wavelength; thus, a generated signal contains no discernible photoluminescence. As a result, the obtained Raman signal has no background and a remarkable signal-to-noise ra...
	SERS is a vibrational spectroscopy approach in which the sample is adsorbed on a colloidal metallic surface (silver, gold, or copper) to increase the strength of Raman signals (Bumbrah and Sharma, 2016). Thus, the SERS approach has excellent sensitivi...
	Application of Raman spectroscopy to Detect Pesticide Residue
	Applications of Raman spectroscopy are far-reaching in nanomaterials, covering the biological, chemical, and medical fields (John and George, 2017). Furthermore, Raman spectroscopy has been applied in agriculture, such as on fruits, vegetables, crops,...
	Implementing one of the Raman spectroscopy kinds, known as dispersive Raman spectroscopy, without any enhancement for pesticide residue detection is challenging due to the weak naturally generated Raman signal. Thus, only a few works discuss its perfo...
	Based on the findings of Dhakal et al. (2014), it could be concluded that identifying pesticide residues using dispersive Raman spectroscopy is ineffective for low-concentration detecting molecules, making it challenging to identify pesticide residue ...
	An approach using another basic Raman method, i.e., FT-Raman, can detect pesticide residues at low concentrations due to reduced laser-induced fluorescence. In research about pesticide residue detection over fruit and vegetable surfaces, it was declar...
	According to Armenta et al., (2005), FT-Raman spectroscopy is undoubtedly an alternative to chromatographic detection methods. At the same time, low sensitivity and high LODs limits are problematic for detecting low pesticide residue concentrations. I...
	Therefore, the SERS method has been employed to enhance the weak  Raman signal. So, Raman spectroscopy becomes more sensitive for pesticide residues from low to high concentrations. The pesticide residue identification using SERS enhancement coupled w...
	The interaction between adsorbed molecules and the surface of nanoparticles is critical to the effectiveness of the SERS method, which results in a low LOD. Furthermore, the most exploited nanoparticles in the SERS technique are gold (Au), silver (Ag)...
	Jiao et al. (2019) designed a pure worm-like AuAg substrate to improve the SERS signal detection of apple pesticide residues. This substrate could help the SERS method lower its detection limit on thiram up to 0.03 ppm. Worm-like AuAg nanochain interc...
	In order to detect chlorpyrifos (CPF) in soil, He et al. (2019) researched substrate size's effect on Raman signals. They utilized five different sizes of gold nanoparticles (Au NPs), including 11, 13, 14, 25, and 42 nm. The study found that deploying...
	Au and Ag are the preferred substrates because of their benefits, such as low cost, simple preparation, and favourable enhancement than other materials (Xu et al., 2017), and are the most frequently used materials for detecting pesticides. Table 3 sum...
	Figure 5. SERS Method in Pesticide Residues Detection (a) in liquid and (b) on the surface.
	Table 3. Pesticide residue detection using SERS method in agricultural products.
	Note: AuNP: Gold Nanoparticles; Au@Ag: silver-coated gold; NR: Nanorod; NS: Nanostar; DW: Dragonfly wing.
	Numerous studies have addressed improving the Raman signal using a variety of substrates and have successfully discovered pesticide residues below the MRL value. However, the reproducibility of results using the SERS method became its limitation, whic...
	SERS has a lot of potential as a field detection method. Because of technological advances, the signal detector may now be miniaturized to the size of a hand, making this method more viable for field detection; the device is called a portable Raman sp...
	More than that, a Raman spectrometer device was developed based on a smartphone. A smartphone-based Raman spectrometer was built with an easy user interface (UI). It could also be removed from the smartphone application list, which meant the Raman mea...
	The SERS technique requires the user to prepare the substrate to be applied, which adds to the method's complexity for field measurements. The less preparation performed on the sample, the easier the measurement; accordingly, a technique is needed to ...
	Pan et al. (2021) carried out research to develop an in-situ surface-enhanced Raman spectroscopy (SERS) method to detect pesticides (acetamiprid) directly, without the need for extraction. Pesticide residues on cabbage leaves had been effectively iden...
	The SERS technique can identify various pesticide residues in agricultural products in certain cases. However, with a note, the detection object must be treated first. Identifying Chlorpyrifos (CPF) and 2, 4-Dichlorophenoxyacetic acid (2, 4-D) in appl...
	Nowadays, Raman data is combined with machine learning, such as chemometrics, ANN, and deep learning. Due to its selectivity for complex objects, ML might help the Raman spectrometer to distinguish each pesticide residue. Identifying pesticide residue...
	Weng et al. (2019) established pesticide residue quantitative (PLSR (partial least square regression), SVM, and RF) and qualitative (SVM, K-nearest neighbors (KNN), and Naïve Bayesian (NB) and RF) model predictions on paddy irrigation water. Paddy wat...
	However, Raman spectroscopy contains numerous spectra data, which need pre-processing steps to reduce uncorrelated information, especially for the portable Raman spectrometer. Zhu et al. (2018) tried detecting chlorpyrifos residues in tea using SERS m...
	To the best of the authors' knowledge, no study has been done to measure the solution of multigrade pesticides mixed such that ML can categorize based on each pesticide's fingerprint. Pesticides are commonly used in more than one type in the field. Un...
	Simple linear regression was employed as a straightforward approach to estimate (quantitative) pesticide residue on fruit quickly. For instance, applying SERS to discover Omethoate residue in peaches generated R2 values of 0.98289 and 0.98 as assessme...
	Table 4. The application of raman spectroscopy methods coupled to detect pesticide residue with machine learning.
	SERS: Surface-enhanced Raman spectroscopy; PLSR: partial least square regression; SVM: Support vector machine; RFR: Random Forest regression; GA: Genetic algorithm; si: Synergy interval; KNN: K-nearest neighbors; DT: Decision tress; AdaBoost: Adaptive...
	Commonly, both the chemometric and ML algorithms are integrated with the pre-processing method. One of the PLS abilities is to reduce data dimensionality, which can be applied to spectral data information. Huang et al. (2016) exhibited the use of PLS ...
	Meanwhile, applying the pre-processing algorithm increased the evaluation value to 0.9874 and 0.679 for R2c and RMSEC, respectively. In addition, the results of the prediction model with other pre-processing methods also gave excellent results, with R...
	Noteworthy, adequate data must be used to build prediction models in order to properly feed the prediction model created. In one case, the authors used a dataset of 14 samples to identify the presence of chlorpyrifos in pears, with R2 values of 0.8622...
	Application of ultraviolet (UV), visible (VIS) to near-infrared (NIR) spectroscopy for pesticide residues detection of agricultural products
	Basic concept of UV-VIS-NIR spectroscopy
	UV, VIS, and Infrared (IR) spectroscopy have been widely employed as a non-invasive technique to reveal bio-information about agricultural objects. Thus, the user, in this case, farmers, can adjust the treatment to improve the quality of the matrix. C...
	There is a law concerning the fall of light in the aforementioned chapter. Most practical applications in the field rely on light transmittance or reflection. While the laboratory scale usually appoints absorbance mode. Field measurements typically i...
	The visible region is responsible for pigment compounds, such as anthocyanins, chlorophylls, carotenoids, etc., (Makky and Soni, 2014). Hence, detecting pesticide residues at this wavelength is tricky because most pesticide residues on fruits and veg...
	The foundation of UV-VIS spectroscopy is the molecules' outer valence electron transition, which produces an absorption spectrum of 200–780 nm. At the same time, IR can be divided into three sub-regions; Near-Infrared (NIR) of 780 – 2,500 nm, Mid-Infr...
	A spectrometer usually consists of a light source (i.e., xenon, tungsten, or deuterium), a sample holder, a dispersion element, and a detector (i.e., photodiode array (PDA) or CCD) (A. De Caro, 2015). The placement of each component depends on the nee...
	Figure 6. UV-Visible spectrometer diagram.
	The components of the NIR method are nearly identical to those of the  UV-VIS spectrometer method. However, a Fourier Transform (FT) technique for the NIR spectrometer exists. The FT-NIR type is a technology that employs an interferometer to generate ...
	Application of UV-VIS-NIR spectroscopy to detect pesticide residue
	The UV-VIS-NIR spectroscopy methods, as is well known, can be used to determine the internal condition of an object, and they are not limited to agricultural objects. The information acquired from the object will benefit personal and industrial purpos...
	There were very few records of the detection of pesticide residues using the UV-VIS laboratory-scale approach. It is quite tricky to obtain pesticide fingerprints inside the visible area. Sahu et al. (2020) investigated the ability of a UV-Visible spe...
	In addition to the utilizing of visible spectrum, relatively few UV applications can still be observed. Using a bench-top UV spectrometer, Omer and Fakhre (2019) attempted to find pyriproxyfen and chlorothalonil residues in cucumber and cabbage. Based...
	Satisfactory findings were obtained in an experiment to detect and measure the residual fungicide on lettuce intact using a hand-held spectrometer based on UV-VIS, according to Steidle Neto et al. (2020). The UV-VIS technique had a detection limit of ...
	Likewise, Ngo et al. (2022) developed a novel hand-held spectrometer by integrating an NSP32m-W1 nanolambda detector into a 3D design (Figure 7). This tool used the reflectance approach, covering the 380–840 nm wavelength range. Then the calibration d...
	Figure 7. Schematic diagram of a novel portable UV-Vis spectrometer (1) lettuce leaf sample; (2) spectrometer holder; (3) spectrometer; (4) computer.
	At the same time, results from bench-top NIR reflectance spectroscopy used to evaluate the presence of pesticide residues in pepper were likewise satisfactory. In contrast to the UV-VIS method, the laboratory version of the NIR method is a non-destruc...
	A silicon diode array makes the NIR method not require an InGaAs array, making it possible to miniaturize this method. The Field Spec 4 spectrometer is one of the portable NIR instruments (manufactured). Because of its compact size and ability to disp...
	Furthermore, changes in temperature and humidity will have a significant impact on the results of the scans. These two elements may impact the NIR lab scale less, but using portable NIRs in the field will always get around this (Nicolaï et al., 2007)....
	Several gadgets combined visible and infrared spectrums to detect pesticide residues on fruits and vegetables—for example, diazinon residue detection in cucumber. The spectrometer findings revealed that the most significant energy absorption area was ...
	UV-VIS-NIR spectroscopy is not an indirect approach that requires multivariate calibration. Furthermore, the portable version of these three methods has issues with natural light, which might interfere with data collection (Menezes et al., 2009). Beca...
	Table 5. The application of uv-vis-nir methods to detect pesticide residue coupled with machine learning.
	*: Bench-top; +: Portable; SMLR: Stepwise multiple linear regression; RMSECV: root mean square errors of calibration-validation; PLSR: Partial least square regression; PCA: Principal component analysis; LDA: Linear discriminant analysis; KNN: k-Neares...
	In an experiment to identify boscalid and pyraclostrobin residues in strawberries, Yazici et al. (2020) discovered encouraging outcomes from applying the NIR technique. In this development, the authors created a prediction model using the PLS method, ...
	Aside from other considerations, such as human and equipment imperfections, using the PLS method as a modeling technique and lowering data dimensionality is still insufficient for UV-VIS-NIR spectra data types with high amounts of data and noise. As a...
	The PCA technique, in addition to PLS, can be employed to reduce redundant and noisy data. Consequently, the proposed model's speed, accuracy, and reliability might be improved. Because PCA is an unsupervised approach, another algorithm is required to...
	Computational techniques estimate pesticide residue values and categorize pesticide-containing and pesticide-free samples. By inputting VIS/NIR spectral data, Nazarloo et al. (2021) distinguished between fresh and pesticide-infected tomatoes using the...
	Overall, UV-VIS-NIR spectroscopy is reliable for identifying pesticide residues at both the bench-top and portable scales. The primary advantages of the scale laboratory are the stability and precision of the sample spectrum information, however, this...
	Application of hyperspectral imaging for pesticide residues detection of agricultural product
	Basic concept of hyperspectral system
	The rationale for developing a hyperspectral imaging (HSI) system is to overcome the constraints of current spectroscopy and imaging approaches. Spectroscopy is a technique for determining an item's spectral properties due to its interaction with ligh...
	Figure 8. Schematic diagram of hyperspectral image (hypercube data).
	The hyperspectral method is ideal for detecting pesticide residues since it covers a wide range of wavelengths (UV, VIS, NIR, SWIR, IR, etc.). Additionally, the impact of pesticide residues on the physical characteristics of objects may be assessed us...
	Figure 9. Hyperspectral scanning mode a) the point-scanning method or whiskbroom, b) the line-scanning method or pushbroom, and c) the area-scanning method.
	In general, the hyperspectral technique's essential components are the wavelength dispersion device, camera, light source, sample place, and computer. Commonly, it has an extra part called the translation stage in the sample place. However, the instal...
	There are many different light sources, including Halogen lamps, light-emitting diodes (LED), lasers, tunable sources, and others (Qin, 2010). The choice of light sources is in line with the spectrum region to be collected. Additionally, optimal light...
	Application of Hyperspectral Imaging to Detect Pesticide Residue
	The HSI system is likewise an indirect method that necessitates calibrating the prediction model and validation of the standard method, just as UV-VIS-NIR or other spectroscopic methods. This process is like a double-edged sword, which is to endure th...
	For instance, L. Zhang et al. (2019) constructed a model prediction to calculate the residue of omethoate on the surface of wheat grains. This investigation separated 400 wheat grain samples into 4 big groups. Each group received a different dose of o...
	Undeniably, users require a massive storage space due to the volume of data that must be collected, and the HSI approach uses spatial and spectral data. Therefore, the data collected by HSI comprises object information, noise, and many redundant data....
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