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ABSTRACT 

A green synthetic route to the facile Biginelli synthesis of 2-oxo- and 

thioxo-1,2,3,4-tetrahydropyrimidines have been developed using formic acid as 

a natural green and bio-based catalyst under solvent-free reaction conditions. 

All reactions are completed in a short period of times and the products are 

obtained in high to excellent yields. The salient features of this green approach 

are simple work-up with no necessity of chromatographic purification steps, 

absence of hazardous organic solvents, use of safe, non-volatile, noncorrosive 

and readily green catalyst, solvent-free conditions, one-pot reaction, eco-

friendly and clean synthesis. 

Keywords: Formic acid, Natural green and Bio-based catalyst, 2-oxo- and 

Thioxo-1,2,3,4-tetrahydropyrimidines, Solvent-free conditions 

 

INTRODUCTION 

Synthesis of heterocyclic compounds has attracted great interests due to 

their wide applicability in life and nature. The compounds with pyrimidinone 

derivatives are reported as, such as calcium channel blockers, α-1a-antagonists 

(Prakash et al., 2008), mitotic kinesin Eg5 inhibition (Kapoor et al., 2000), anti 

cancer (Mal3-101) (Wisen et al., 2008), anti HIV agent (Heys et al., 2000), 

antibacterial and antifungal (Ashok et al., 2007), antiviral (Hurst et al., 1961), 

antioxidative (Magerramow et al., 2006). The representatives such as 

batzelladines, ptilomycalines and crambescidines exhibit many biological 

activities such as anticancer, antifungal, anti HIV, etc (Bewley et al., 2004). 
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One of the dominating factors in recent organic synthetic routs is green 

chemistry. Atom economy, reduction in byproduct, number of steps in organic 

synthesis, energy cost, produced waste, use of non-hazardous reagents in catalytic 

protocols are one of the most important goals of green chemistry. Furthermore, 

organic reactions under solvent-free conditions for green and clean synthesis of 

organic compounds have attracted much interest in organic chemists. Due to, our 

recent studies focused on developing of green catalyst in multi-component 

reactions (Mohamadpour et al., 2016; Mohamadpour et al., 2017; Lashkari et al., 

2018; Mohamadpour., 2018a; Mohamadpour et al., 2018b; Mohamadpour et al., 

2018c; Mohamadpour., 2019). 

In recent decades, a number of methodologies for the preparation of these 

compounds have been reported that is including various catalysts such as calcium 

fluoride (Chitra et al., 2009), copper(II)sulfamate (Liu et al., 2008), baker’s yeast 

(Kumar et al., 2007), hydrotalcite (Lal et al., 2012), hexaaquaaluminium (III) 

tetrafluoroborate (Litvic et al., 2010), TBAB (Ahmad et al., 2009), copper (II) 

tetrafluoroborate (Kamal et al., 2007), Copper (II) acetate (Khodja et al., 2014), 

[Btto][p-TSA] (Zhang et al., 2015), triethylammonium acetate (Attri et al., 2017), 

p-dodecylbenzenesulfonic acid (Aswin et al., 2014), TMSPTPOSA (Rao Jetti  

et al., 2017), hierarchical zeolite (Shahid et al., 2017), bismuth(III)nitrate or PPh3 

(Slimi et al., 2016), lanthanum oxide (Kuraitheerthakumaran et al., 2016) and 

dendrimer-PWA (Safaei-Ghomi et al., 2018). Some of these methodologies have 

limitations such as difficult work-up, toxic and expensive catalysts, low yields, 

the use of strongly acidic conditions and long time reactions. As part of our 

ongoing research program on the development of green methodologies, herein, 

we report a green and facile one-pot synthesis of synthesis of 2-oxo- and thioxo-

1,2,3,4-tetrahydropyrimidines via three-component Biginelli (Biginelli et al., 

1893) reaction between β-keto esters, aldehyde derivatives and urea/thiourea in 

the presence of catalytic amount of formic acid under thermal and solvent-free 

conditions. The advantages of formic acid as a mild, natural green and bio-based 

acidic catalyst (Thompson et al., 1997) in organic synthesis are environmentally 

friendly, highly efficient and non-toxic. It is noted that, formic acid as a catalyst 

shows superior properties like commercially available. It is inexpensive and can 

be easily handled. The merits of this acidic catalyst does not end here, in this 

present work, the products were obtained through simple filtering with no need 

column chromatographic separation. Furthermore, high to excellent yields, short 

reaction times and eco-friendly procedure that makes our protocol alternative in 

comparison to some of the earlier reported methods. 

 

MATERIALS AND METHODS 

General 

Melting points all compounds were determined using an Electro thermal 

9100 apparatus. 1H NMR spectra were recorded on a Bruker DRX-400 Avance 
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instrument with DMSO-d6 as solvents. All reagents and solvents were purchased 

from Merck, Fluka and Acros chemical companies were used without further 

purification. 

 

General procedure for preparation of 2-oxo- and thioxo-1,2,3,4 

tetrahydropy-rimidines (4a- q). A mixture of aldehyde derivatives (1, 1.0 

mmol) and urea/thiourea (2, 1.5 mmol), ethyl/methyl acetoacetate (3, 1.0 mmol) 

was heated under solvent-free conditions at 70 °C for appropriate time in the 

presence of formic acid (10 mol %). After completion of the reaction (by thin 

layer chromatography TLC) the mixture was cooled to rt and cold water was 

added and the precipitated was separated by filtration and recrystallized from 

ethanol to afford the pure products (4a- q).  

 

Spectra data some of known products are represented below: 

 

5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-

one (4a): 

Yield: 87%; m.p. 206-208 °C; 1H NMR (400 MHz, DMSO-d6): 1.10 (3H, 

t, J= 9.6 Hz, CH3CH2), 2.28(3H, s, CH3), 3.99 (2H, q, J=9.2 Hz, CH2O), 5.27 

(1H, s, Hbenzylic), 7.50-7.53 (2H, m, HAr), 7.23 (2H, d, J= 9.2Hz, HAr), 7.92 and 

9.38 (2H, 2s, 2NH). 

 

5-Methoxycarbonyl-6-methyl-4-(2-chlorophenyl)-3,4-dihydropyrimidin-

2(1H)-one (4c): 
Yield: 80%; m.p. 250-252 °C; 1H NMR (400 MHz, DMSO-d6): 2.31 (3H, 

s, CH3), 3.46 (3H, s, OCH3), 5.62 (1H, s, Hbenzylic), 7.28-7.34 (3H, m, HAr), 7.42 

(1H, d, J=7.2 Hz, HAr), 7.72 and 9.36(2H, 2s, 2NH). 

 

5-Ethoxycarbonyl -6-methyl -4-(4-methoxyphenyl)-3,4-dihydropyrimidin-

2(1H)–one (4g): 

Yield: 86%; m.p. 202-204°C; 1H NMR (400 MHz, DMSO-d6): 1.11 

 (3H , t, J= 9.6 Hz, CH3CH2), 2.24(3H, s, CH3), 3.73 (3H, s, OCH3), 3.99 (2H, q, 

J=9.6 Hz, CH2O), 5.09 (1H, s, Hbenzylic), 6.89 (2H, d, J= 8.4Hz, HAr), 7.15(2H, d, 

J= 8.8Hz, HAr), 7.70 and 9.18 (2H, 2s, 2NH).  

 

5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4h): 

Yield: 86%; m.p. 198-200 °C; 1H NMR (400 MHz, DMSO-d6): 1.10  

(3H, t, J= 7.2 Hz, CH3CH2), 2.26 (3H, s, CH3), 3.99 (2H, q, J=7.2 Hz, CH2O), 

5.15 (1H, s, Hbenzylic), 7.26 (3H, d, J= 7.2 Hz, HAr), 7.33 (2H, t, J=7.2 Hz, HAr), 

7.76 and 9.21 (2H, 2s, 2NH). 
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5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-thione 

(4k): 

Yield: 85%; m.p. 209-211 °C; 1H NMR (400 MHz, DMSO-d6): 1.11 

 (3H , t, J= 7.2 Hz, CH3CH2), 2.31 (3H, s, CH3), 4.02 (2H, q, J=7.2 Hz, CH2O), 

5.19 (1H, s, Hbenzylic), 7.23 (2H, d, J=7.2 Hz, HAr), 7.28 (1H, t, J=7.2 Hz, HAr), 7.36 

(2H, t, J=7.2 Hz, HAr), 9.68 and 10.36 ( 2H, 2s, 2NH). 

 

RESULTS  

At the beginning, we performed three-component condensation of 

benzaldehyde (1.0 mmol), urea (1.5 mmol) and ethyl acetoacetate (1.0 mmol) in 

the presence of formic acid (10 mol%) under solvent-free at 70 °C, the product 

4h was found in 86%, which was confirmed by 1H NMR spectroscopy. 

Encouraged by this result, we have chosen this reaction as a model reaction to 

study the reaction conditions further for the synthesis of 2-oxo- and thioxo-

1,2,3,4-tetrahydropyrimidines (4a-q). The catalyst plays an important role in the 

success of the reaction in terms of the rate of the reaction and yields. In order to 

optimize the reaction conditions, quantity of the catalyst required was 

determined. No product could be detected in the absence of the catalyst even after 

10 h (Table 1, entry 1). Then, 5 mol% formic acid was used to perform the 

reaction. But it requires slightly longer reaction time and low yields (Table 1, 

entry 2). Therefore, the loading of catalyst was gradually increased from 5 mol% 

to 15 mol% (Table 1). It was found that 10 mol% of formic acid are optimal to 

carry out the reactions in a short duration (Table 1, entry 3). The use of excess of 

catalyst did not alter either reaction time or yield of the product. Thus, the use of 

10 mol% formic acid is ideal to achieve the desired product in high yields. We 

also investigated different temperatures for the model reaction (Table 1). It was 

observed that fast reaction occurred on raising the temperature from rt to 80 °C 

and the yield of preferred production increased significantly (Table 1). We were 

satisfied to find that the reaction proceeded smoothly and almost complete 

conversion of reactants was observed at 70 °C to afford the desired product (4h) 

in 86% yields within 20 min (Table 1, entry 3). A further increase in the 

temperature did not affect the product yield (Table 1, entry 8). Having optimized 

reaction conditions, we synthesized a series 2-oxo- and thioxo-1,2,3,4-

tetrahydropyrimidines via aryl aldehyde derivatives (1, 1.0 mmol), urea/ thiourea 

(2, 1.5 mmol) and ethyl/methyl acetoacetate (3, 1.0 mmol) (4a-q) using 10 mol% 

formic acid as the catalyst under solvent-free conditions at 70 °C (Scheme 1) and 

the results are summarized in Table 2. 
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(Y)  2a= O; 2b= S

(R) 3a= Et; 3b= Me

(Ar)1a,=4-NO2-C6H4; 1b= 4-OH-C6H4; 1c= 2-Cl-C6H4; 1d= 4-OH-C6H4; 1e= 3-OMe-C6H4; 1f= 4-Me-C6H4; 1g= 4-

OMe-C6H4; 1h= Ph; 1i= 4-NO2-C6H4; 1j= 2-Cl-C6H4; 1k= Ph; 1l= 4-F-C6H4; 1m= 4-Me-C6H4; 1n= 4-F-C6H4; 1o= 3-

OH-C6H4; 1p= 2-NO2C6H4; 1q= N,N-diMe-C6H4

H

O

X

Formic acid (10 mol %)

Solvent free, 70 °C

4 a-q

CH3

OR

NH2

Y NH2

2

3

+ HN

NH
CH3

Y

1

O

O

CO2R

X

  
 

Figure 1. Synthesis of 2-oxo- and thioxo-1,2,3,4-tetrahydropyrimidines. 
 

Table 1. Optimization of the reaction condition on the synthesis of 4h a. 
 

H

O

CH3

OEt

NH2

O NH2

+ HN

NH
CH3

O

O

O

CO2Et

 
Isolated yields (%) Time (min) Temperature (0C) Formic acid (mol %) Entry 

No product 600 70 Catalyst free 1 

61 35 70 5 2 

86 20 70 10 3 

No product 600 rt 10 4 

25 75 40 10 5 

42 45 50 10 6 

67 30 60 10 7 

86 20 80 10 8 

88 20 70 15 9 

Note: a Reaction conditions: benzaldehyde (1.0 mmol), ethyl acetoacetate (1.0 mmol), urea (1.5mmol) and formic 

acid was heated under various temperatures for the appropriate time.  
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Table 2. Synthesis of 2-oxo- and thioxo-1,2,3,4-tetrahydropyrimidines. 

Entry Substrate  Substrate  Substrate  Product a Time 

(min) 

Yield 

% b 

m.p.°C Lit. m.p.°C 

1 CHO

NO2  

CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

NO2

4a 

20 87 206-

208 

207-209 

(Liu et al., 

2009) 

2 CHO

OH  

CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

OH

4b 

35 73 231-

233 

234-236 

(Khodja  

et al., 

2014) 

3 CHO

Cl

 
CH3

OMe

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Me

Cl

4c 

25 80 250-

252 

248-252 

(Liu et al., 

2009) 

4 CHO

OH  

CH3

OMe

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Me

OH

4d 

30 75 246-

248 

245-246 

(Kumar  

et al., 

2007) 

5 CHO

OMe  
CH3

OEt

O

O  

NH2H2N

S

 

HN

N
H

CH3S

CO2Et

OMe

4e 

30 84 151-

153 

150-

151(Kumar 

et al., 

2007) 

Note:  a Isolated yield. b Reaction conditions: Aryl aldehyde derivatives (1.0 mmol), ethyl/methyl acetoacetate (1.0 mmol), 

urea/thiourea (1.5 mmol) and formic acid (10 mol %) was heated at 70 °C. 
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Table 2. Cont.        

Entry Substrate  Substrate  Substrate  Product a Time 

(min) 

Yield 

% b 

m.p.°C Lit. m.p.°C 

6 CHO

Me  

CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

Me

4f 

20 88 200-

202 

204-205 

(Kumar  

et al., 

2007) 

7 CHO

OMe  

CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

OMe

4g 

25 86 202-

204 

203-205 

(Zhang  

et al., 

2015) 

8 CHO

 
CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

4h 

20 86 198-

200 

200-202 

(Liu et al., 

2009) 

9 CHO

NO2  

CH3

OMe

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Me

NO2

4i 

20 86 212-

214 

214-216 

(Liu et al., 

2009) 

10 CHO

Cl

 
CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

Cl

4j 

25 78 220-

222 

220-223 

(Liu et al., 

2009) 

Note:  a Isolated yield. b Reaction conditions: Aryl aldehyde derivatives (1.0 mmol), ethyl/methyl acetoacetate (1.0 mmol), 

urea/thiourea (1.5 mmol) and formic acid (10 mol %) was heated at 70 °C. 
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Table 2. Cont.        

Entry Substrate  Substrate  Substrate  Product a Time 

(min) 

Yield 

% b 

m.p.°C Lit. m.p.°C 

11 CHO

 CH3

OEt

O

O  

NH2H2N

S

 

HN

N
H

CH3S

CO2Et

4k 

20 85 209-

211 

208-210 

(Liu et al., 

2009) 

12 CHO

F  

CH3

OMe

O

O  

NH2H2N

S

 

HN

N
H

CH3S

CO2Me

F

4l 

25 86 206-

208 

208-210 

(Ahmad  

et al., 

2009) 

13 CHO

Me  

CH3

OMe

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Me

Me

4m 

20 84 201-

203 

200-203 

(Kamal  

et al., 

2007) 

14 CHO

F  

CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

F

4n 

20 89 176-

178 

174-176 

(Ahmad  

et al., 

2009) 

15 CHO

OH  
CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

OH

4o 

35 78 
165-

167 

163-166 

(Kamal  

et al., 

2007) 

 

Note:  a Isolated yield. b Reaction conditions: Aryl aldehyde derivatives (1.0 mmol), ethyl/methyl acetoacetate (1.0 mmol), 

urea/thiourea (1.5 mmol) and formic acid (10 mol %) was heated at 70 °C. 
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Table 2. Cont.        

Entry Substrate Substrate Substrate Product a Time 

(min) 

Yield 

% b 

m.p.°C Lit. m.p.°C 

16 CHO

NO2

 
CH3

OMe

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Me

NO2

4p 

20 89 276-

278 

274-277 

(Kamal  

et al., 

2007) 

17 CHO

N
Me Me  

CH3

OEt

O

O  

NH2H2N

O

 

HN

N
H

CH3O

CO2Et

N
Me Me

4q 

30 84 255-

257 

254-256 

(Khodja  

et al., 

2014) 

Note:  a Isolated yield. b Reaction conditions: Aryl aldehyde derivatives (1.0 mmol), ethyl/methyl acetoacetate (1.0 mmol), 

urea/thiourea (1.5 mmol) and formic acid (10 mol %) was heated at 70 °C. 

 

 

DISCUSSION 

 

Although different mechanistic pathways have been previously proposed 

(Kamal et al., 2007; De Souza et al., 2009;  Alvim et al., 2014; Rao Jetti et al., 

2017; Safaei-Ghomi et al., 2018), we believe that the reaction may proceed 

through an initial N-acylimine B formed from aldehyde 3 and urea 2 (Figure 2). 

The coordination of the lone-pair of the nitrogen atom in the N-acylimine B with 

the formic acid could lead to the in situ formation of an N-carbamoyliminium ion 

C, which is sufficiently electrophilic to react with the enol form of ethyl 

acetoacetate A affording the open chain intermediate D. Further intramolecular 

cyclization, with elimination of H2O, produce the 2-oxo- and thioxo-1,2,3,4-

tetrahydropyrimidines 4. 
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4
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X
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H2N
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H

O

OH
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Figure 2. Proposed mechanistic route for the synthesis of 2-oxo- and thioxo-

1,2,3,4-tetrahydropyrimidines. 

 

Comparison of catalytic ability some of catalysts reported in the literature 

for synthesis of 2-oxo- and thioxo-1,2,3,4-tetrahydropyrimidines are shown in 

Table 3. This study reveals that formic acid has shown its extraordinary potential 

to be an alternative green, bio-based, readily, highly efficient and inexpensive 

catalyst for the Biginelli reaction. In Addition, the use of solvent-free conditions 

with high to excellent yields and short reaction times in the reaction with both 

urea and thiourea are the notable advantages this green and simple procedure. 
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Table 3. Comparison of catalytic ability some of catalysts reported in the literature 

for synthesis of 2-oxo- and thioxo-1,2,3,4-tetrahydropyrimidinesa. 

 

CONCLUSION 

In summary, a natural green, highly efficient and bio-based acidic catalyst, 

i.e. formic acid was developed and exploited for clean, facile and economical 

one-pot synthesis of 2-oxo- and thioxo-1,2,3,4-tetrahydropyrimidines from 

starting materials under solvent-free conditions. This method gave an insight on 

the credibility of pathway followed by the aforementioned green and bio-based 

catalyst in aiding the heterocyclic compound formation. Cleaner reaction profile, 

simple column-free work up condition, shorter reaction times, high to excellent 

yields, solvent-free conditions, eco-friendly and high catalytic activity make this 

present procedure an interesting alternative to multistep approach. 
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