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ABSTRACT

 This paper focuses on optimizing scheduling solutions for the flexible flow shop 
problem, with tooling constraints and machine eligibility, to minimize makespan for 
cultivating sugarcane. Normally, preparing the soil for planting sugarcane requires six 
steps: 1) 7 power harrow and rototiller, 2) rotary mini combine, 3) 22/24 disc harrow, 4) 
rotary mini combine, 5) sugarcane plantation, and 6) sugarcane sprayer. Each of these 
steps requires a variety of tools. With limited availability of tools and equipment, resource 
allocation is important. The objective of this research was to minimize the makespan. For 
optimal convergence, meta-heuristics, such as a Differential Evolution algorithm, a Particle 
Swarm optimization algorithm, and a Hybrid DEPSO algorithm were developed to solve the 
problem. Experimental results showed that all three methods efficiently solved flexible flow 
shop problems.

Keywords: Scheduling, Tool limitations, Tooling constraints, Tool change, Differential 
evolution, Particle swarm optimization, Sugarcane

INTRODUCTION

 Sugarcane is an important crop in Thailand, the second largest sugar exporter in 
the world (Office of the Cane and Sugar Board, 2016). Increasing demand for cultivating 
sugarcane in Thailand has outstripped resources, especially for small farmers who do not 
own their own agricultural machinery. Preparing the fields for planting requires hiring large 
and expensive operators (Prasara and Gheewala, 2016). Thus, better allocation of resources is 
important to reduce the cost of producing sugarcane (Sugar Research Australia, 2017).
 Preparing the soil for sugarcane production involves six steps, denoted here by the 
principal tool required: 1) 7 power harrow and rototiller, 2) rotary mini combine, 3) 22/24 
disc harrow, 4) rotary mini combine, 5) sugarcane plantation, and 6) sugarcane sprayer. Steps 
1, 4, 5, and 6 require small tractors and Steps 2 and 3 require medium- to large-sized tractors 
(see Figure 1). This study attempts to find solutions to the scheduling challenges inherent in 
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sugarcane cultivation created by these resource/machinery constraints, with the objective of 
minimizing completion time. The constraints include flexible flow shop, the need for the same 
machine at multiple steps, and limited tools.
 Many researchers have presented a variety of flexible flow shop models based on the 
traditional flexible flow shop scheduling problem. The flexible flow shop problem is an NP-
hard problem, and metaheuristic algorithms have been presented as the most optimal way to 
handle such large problems (Hoogeveen et al., 1996; Gupta et al., 2002; Wang and Hunsucker, 
2003; Baumann and Trautmann, 2011). Many algorithms have been designed to help solve 
these problems, including tabu search algorithms (Widmer, 1991), hybridization of particle 
swarm optimization with Cauchy distribution for optimal sequences (Sangsawang et al., 
2015), a modified genetic algorithm for hybridized ant colony optimization (Chamnanlor et 
al., 2017), and a simulated annealing based heuristic (Batur et al., 2016). Flexible flow shop 
problems are complex. Several applied mathematical models and metaheuristics have been 
developed as solutions, such as those by Melnyk et al. (1989), Widmer (1991), Ghosh et al. 
(1992), Gultekin et al. (2006), Chen (2008), Zhonghua et al. (2009), Zeballos (2010), Zeballos 
et al. (2010), Xu et al. (2013), and Özpeynirci et al. (2016). Recent research has applied 
evolutionary computing methods. Differential evolution is one of the strongest methods for 
continuous optimization, with an algorithm that has been successfully applied with several 
techniques. For example, Zhou (2012) used the new differential evolution algorithm based 
on a variable neighborhood search to contribute toward solving the flow shop scheduling 
problem. Tonge and Kulkarni (2013) improved the differential evolution algorithm using the 
classical Nawaz Enscore Ham algorithm and iterated local search, with an enhanced swap 
operator to minimize makespan. Many researchers have used differential evolution algorithms 
to minimize makespan (Rahman et al., 2014; Moonsri et al., 2015; Santosa and Riyanto, 
2016). The particle swarm optimization algorithm is another interesting method (Liang et al., 
2006; Nasir et al., 2012). This technique was first proposed by Eberhart and Kennedy (1995) 
and provides simple instrumentality that has been successfully employed in many areas of 
research. Additionally, much research on the particle swarm optimization algorithm has 
focused on diversifying the search to prevent premature convergence and allow the algorithm 
to escape from local minima (Shi and Eberhart, 1998; Yang and Simon, 2005). Currently, the 
literature combines particle swarm optimization and iterated local search to solve hybrid flow 
shop scheduling problems with preventive maintenance activities (Li et al., 2014). To increase 
performance and alleviate the defects of problem solving, the hybrid DEPSO algorithm has 
been proposed (Jayabarathi, 2007; Li et al., 2008; Pant et al., 2008).
 This paper proposes a solution that applies differential evolution, particle swarm 
optimization, and hybrid DEPSO to the problem of tractor scheduling, with the objective of 
minimizing the makespan. The results from this study can serve as a prototype for developing 
decision tools for sugarcane cultivation and can also be applied to other industrial crops.
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Figure 1. Characteristics of the problem.

MATERIALS AND METHODS

Differential evolution algorithm
 Storn and Price (1997) developed the differential evolution algorithm for continuous 
optimization problems:

Notation:
 G : Generation number
 PG : Population of NP-D-dimension
 Xi.G : Random vector
 Vi.G : Mutant vector
 Ui.G : Trial vector
 D : Dimensional parameter
 randb (j)  : A random number generated from [0,1] 
 rnbr (i)  : A random integer from [1, 2,…, D]
 Jrand : Position vector of particle i
 F  : Scaling factor

Differential evolution: 
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 Mutation operation. Each of the N parameter vectors undergoes mutation, 
recombination, and selection. Mutation expands the search space. For a given parameter 
vectorXi,G, randomly select three vectors X1,G, X2,G, …, X3,G, such that the indices I, r1, r2, r3 are 
distinct. Add the weighted difference of two of the vectors to the third Vi,G = Xr1,G+ F(Xr2,G-Xr3,G). 
The mutation factor F is a constant from [0,2]. Vi,G is called the donor vector.
 Recombination operation. Recombination incorporates successful solutions from the 
previous generation. The trial vector Ui,G+1 is developed from the elements of the target vector, 
Xi,G, and the elements of the donor vector, Vi,G+1. Elements of the donor vector enter the trial 
vector with probability CR.

randj,i~U[0,1], Irand is a random integer from [1,2,…,D]. Irand ensuring that Vi,G+1 ≠ Xi,G.

 Selection operation. The target vectorXi,G, is compared with the trial vector Vj,i,G+1   
and the one with the lowest function value is admitted to the next generation.

 Mutation, recombination, and selection continue until some stopping criterion is 
reached; in the example, NP=100; F is 2; and CR is 0.8. Distances are given in Table 1.

Particle swarm optimization algorithm
 Eberhart and Kennedy (1995) developed a novel optimization algorithm named particle 
swarm optimization that mimicked the flying behavior of a flock of birds; the algorithm has 
been verified as efficient for solving both continuous and discrete optimization problems 
(Figure 2).
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Figure 2. Flowchart of particle swarm optimization algorithm.

The structure of the particle swarm optimization algorithm is as follows:

Notation:
 cp : the particle best acceleration constant
 cg : the global best acceleration constant
 w : the inertia weight
 r  : uniform random number in range [0,1]
 xi : the position vector of particle i
 vi : the velocity vector of particle i
 pBesti : the personal best of the particle i
 gBest : the global best
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Figure 3. Operation-based encoding.

Hybrid diff erential evolution and particle swarm optimization
 Pant et al. (2008) developed the hybrid DEPSO algorithm to solve continuous 
optimization problems, helping to maintain population diversity and producing a good optimal 
solution. All algorithms used the same encoding-decoding algorithm.
 The encode method. The operation vectors show each candidate solution for the 
fl exible flow shop scheduling with tooling constraints problem. Encoding of each vector is 
randomly numbered from 0 to 1 as a real number. According to the size of the population 
considered, each vector has a dimension value equal to the number of fi elds considered, as 
shown in Figure 3.



CMU J. Nat. Sci. (2018) Vol. 17(3)248

The pseudo code of the hybrid DEPSO Algorithm is:

Notation:
 G : Generation number
 PG : Population of NP-D-dimension
 Xi.G : Random vector
 Vi.G : Mutant vector
 Ui.G : Trial vector
 D : Dimensional parameter
 randb (j) : A random number generated from [0,1] 
 rnbr (i)  : A random integer from [1,2,…,D]
 Jrand : Position vector of particle i
 F  : Scaling factor
 cp : Particle best acceleration constant
 cg : The global best acceleration constant
 w : Inertia weight
 r  : Uniformly random number in range [0,1]
 xi : Position vector of particle i
 vi : Velocity vector of particle i
 pBesti : Personal best of the particle i
 gBest : Global best
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 The decode method. Decoding sorts the rank order value of each vector in ascending 
order. The vectors will assign the sequence of operations of the machine. The next step is the 
allocation of fields to machines. Fields will be allocated randomly to the machines at each 
stage by following the sequence of operations in the rank order value steps. For example, the 
assignment of five fields on a two-stage production system with two machines in each stage is 
sequenced as follows: field 3 - field 5 - field 1 - field 2 - field 4, as shown in Figure 4.

Figure 4. An example of decoding performed by sorting the rank order value. 

 After the random vectors/particles are sorted, the field sequence and machine assignment 
for each field must be assigned. Then, changing setup tool time and machine eligibility can be 
assigned simultaneously for calculating the completion time.Random machines are assigned 
to fields that minimize completion time. Moreover, fields are assigned to the machine that  
minimizes the completion time, as shown in Figure 5.
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Figure 5. Decoding the particle to active scheduling.

Computational experiments
 In this section, several computational experiments are reported from various test 
problems. The case has been established based on the number of fields (n), number of stages 
(s), and number of machines (m). Each case can be identified in the form of ‘‘Number of stage 
× Number of machines in each stage × Number of products’’. For instance, a problem with 
six stages, two machines at the first stage, two machines at the second stage, three machines 
at the third stage, two machines at the fourth stage, two machines at the fifth stage, and two 
machines at the sixth stage with 10 fields can be denoted by ‘‘6 x (2-2-3-2-2-2) x 10”. Consider 
the makespan with six stages to be processed on three types of tractors with six types of tools. 
The processing times, tool change times of types 1, 4, 5, and 6 and tool change times of types 
2 and 3 are shown in Tables 1, 2, and 3. The experiments run for 10 replications.

Table 1. Data used in the experiments.

Data
Tractor type

Type 1 Type 2 Type 3

Processing time (min/ton) 10 15 15

Table 2. Data used in tool change time of types 1, 4, 5, and 6. 

Tool type 1 4 5 6

1 0 30 30 30
4 30 0 30 30
5 30 30 0 30
6 30 30 30 0

Table 3. Data used in tool change time of types 2 and 3. 

Tool type 2 3

2 0 40
3 40 0

 Pilot experiments were performed to test a set of potential values for each parameter 
to find the appropriate differential evolution algorithm and particle swarm optimization 
parameters. The parameter values used in this paper are presented in Tables 4, 5, and 6.
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Table 4. Parameter values for the differential evolution algorithm.

Parameter Value

Population number (NP) 50
Maximum iterations (T) 100
Mutation factor (F) 1
Crossover constant (CR) 0.8

Table 5. Parameter values for the particle swarm optimization algorithm.

Parameter Value

Population size (K) 50
Maximum iterations (T) 100
Personal best position acceleration constant                           cp = 0.5
Global best position acceleration constant                           cg = 0.75
Inertia weight                        w(t) = 0.9

Table 6. Parameter values for the hybrid DEPSO algorithm.

Parameter Value

Maximum iterations (T) 100
Population number (NP) 50
Mutation factor (F) 1
Crossover constant (CR) 0.8
Population size (K) 50
Personal best position acceleration constant                           cp = 0.5
Global best position acceleration constant                           cg = 0.75
Inertia weight                        w(t) = 0.9

RESULTS

 This section compares findings from the differential evolution algorithm, particle 
swarm optimization, and hybrid DEPSO algorithms that were created with 10 different 
problem sets: Set 1 – 6×(3-2-2-3-3-3)×10; Set 2 – 6×(4-2-2-4-4-4)×10; Set 3 – 6×(4-2-2-4-4-
4)×20; Set 4 – 6×(4-2-2-4-4-4)×20; Set 5 – 6×(5-2-2-5-5-5)×30; Set 6 – 6×(5-3-3-5-5-5)×30; 
Set 7 – 6×(5-3-3-5-5-5)×40; Set 8 – 6×(6-2-2-6-6-6)×40; Set 9 – 6×(6-3-3-6-6-6)×50; Set 
10 – 6×(7-3-3-7-7-7)×50. The computational results with the averages and the best solution 
obtained by the proposed algorithms are presented in Table 7; the hybrid DEPSO had a better 
makespan solution than the differential evolution algorithm and particle swarm optimization 
for eight of the problems. The hybrid method demonstrated an outstanding ability to solve 
flexible flow shop problems. The relative improvement results showed that the differential 
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evolution algorithm, particle swarm optimization, and hybrid DEPSO algorithms improved 
the makespan solution by averages of 8.98%, 8.44%, and 9.96%, respectively (Table 8). While 
the hybrid DEPSO gave the best solution, its computational time was relatively high (Table 7, 
Figure 6), although at an acceptable level.
 To measure the quality of makespan solution generated by the proposed algorithms, the 
relative improvement of the makespan solutions obtained by the current practice algorithm 
with respect to those of the differential evolution algorithm, particle swarm optimization, and 
hybrid DEPSO algorithms were calculated using equation (1). All algorithms were developed 
using MATLAB software, version 7.7.0.471 (R2008b) on Intel® Core(TM) i7-6700HQ CPU 
@ 2.80 GHz RAM (8 GB RAM).
Where, 
RI = the relative improvement (%) between sol_current and sol_metaheuristic,

Solcurrent  = the solution obtained from the current practice, and
Solmetaheu  = the solution obtained from the differential evolution algorithm, particle swarm 
optimization or hybrid DEPSO algorithm

Table 7. Solution quality in terms of the objective function.

Problem

Size Makespan (hr) Computation time (sec)

Stages Machine Fields
Current 

practice

Average Average

  DE   PSO   Hybrid   DE PSO   Hybrid

1 6 (3-2-2-3-3-3) 10      26.13   19.40   19.40   19.40     7.31       7.98        14.24

2 6 (4-2-2-4-4-4) 10      18.33   16.00   16.00   16.00     7.08       9.58        15.46

3 6 (4-2-2-4-4-4) 20      44.33   39.50   40.83   39.25 162.14   179.23      267.58

4 6 (4-2-2-4-4-4) 20      39.50   35.83   35.83   35.33 200.66   223.6      489.785

5 6 (5-2-2-5-5-5) 30      55.83   51.75   52.33   50.83 374.34   390.97      600.12

6 6 (5-3-3-5-5-5) 30      62.63   59.67   60.00   58.20 415.22   433.08      797.81

7 6 (5-3-3-5-5-5) 40      97.37   90.58   90.83   89.57 396.84   413.51      823.78

8 6 (6-2-2-6-6-6) 40    103.50   99.33   99.50   97.33 532.56   543.56    1076.63

9 6 (6-3-3-6-6-6) 50    111.18 106.25 106.83 105.92 562.34   563.9    1207.06

10 6 (7-3-3-7-7-7) 50    114.17 109.83 110.00 109.17 645.69   660.88    1341.94
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Figure 6. Percentage relative improvement and makespan for each test problem.

Table 8. Percentage relative improvements for each algorithm.

Problem
Size RI (%)

Stages Machine Fields DE PSO Hybrid

1 6 (3-2-2-3-3-3) 10 25.77 25.77 25.77
2 6 (4-2-2-4-4-4) 10 12.73 12.73 12.73
3 6 (4-2-2-4-4-4) 20 10.90   7.89 11.47
4 6 (4-2-2-4-4-4) 20   9.28   9.28 10.55
5 6 (5-2-2-5-5-5) 30   7.31   6.27   8.96
6 6 (5-3-3-5-5-5) 30   4.74   4.20   7.08
7 6 (5-3-3-5-5-5) 40   6.97   6.71   8.01
8 6 (6-2-2-6-6-6) 40   4.03   3.86   5.96
9 6 (6-3-3-6-6-6) 50   4.44   3.91   4.74
10 6 (7-3-3-7-7-7) 50   3.65   3.80   4.38

Average   8.98   8.44   9.96

DISCUSSION

 The sugarcane cultivation process is very complicated. We addressed the limitations of 
sugarcane cultivation, such as tooling constraints (setup time was considered as tool changing 
time only) and machine eligibility. An efficient scheduling method is an important problem in 
academic and industrial research. 
 In scheduling flexible flow shop problems, Baumann and Trautmann (2011) developed 
mixed integer programming for minimizing changeover times, but this method can only solve 
small problems. Chamnanlor and Sethanan (2015), Chamnanlor et al. (2017), and Sangsawang 
et al. (2015) developed hybrid particle swarm optimization with a Cauchy distribution for the 
optimal sequencing of problems involving a reentrant hybrid flow shop scheduling problem 
with time window for minimizing makespan. Batur et al. (2016) used a simulated annealing 
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based heuristic for scheduling problems arising in hybrid flexible flow shop problems that 
repeatedly produce a set of multiple part types. Although most tooling constraint studies have 
looked at different problems, they have similar objectives, such as minimizing makespan or 
minimizing completion time (Melnyk et al. (1989), Widmer (1991), Widmer (1991), Ghosh 
et al. (1992), Gultekin et al. (2006), Chen (2008), Zeballos (2010), Zeballos  et al. (2010), 
Xu et al. (2013)). This study found that the differential evolution algorithm, particle swarm 
optimization and hybrid DEPSO were effective and could allocate resources for sugarcane 
cultivation scheduling: all algorithms found better solutions than the current practice. Our 
performance comparison between the differential evolution algorithm and particle swarm 
optimization showed that the differential evolution algorithm performed better than particle 
swarm optimization in terms of quality, resolution and computation time, while hybrid DEPSO 
algorithms provided better answers than the differential evolution algorithm and the particle 
swarm optimization algorithm, which took more time to compute. The superiority of hybrid 
DEPSO over the differential evolution algorithm and particle swarm optimization has also 
been demonstrated in other research fields, such as flexible flow shop scheduling (Chamnanlor 
et al. (2017), Sangsawang et al. (2015), Batur et al. (2016)) and hybrid DEPSO algorithms 
(Jayabarathi et al. (2007), Li et al. (2008), Li et al. (2014)).
 As sugarcane cultivation has only six steps, other cultivation systems may not be able 
to apply this research directly. Our solution is suitable for smallholder farmers that either do 
not own their own equipment or with insufficient tractors and tools to improve the soil for 
growing sugarcane. 

CONCLUSION

 This paper has presented the implementation of a particle swarm optimization algorithm 
and a differential evolution algorithm for optimizing multistage flexible flow shop scheduling 
problems in the sugar industry with dependent tooling constraints and machine eligibility 
constraints. The objective is to minimize the makespan. A differential evolution algorithm, a 
particle swarm optimization algorithm and a hybrid DEPSO algorithm were developed to solve 
practical problems. The differential evolution algorithm and the particle swarm optimization 
algorithm were compared to evaluate the effectiveness of the heuristics algorithm from real-
world cases of planting sugarcane. This paper showed that the differential evolution algorithm 
gave an RI of makespan of 8.98%, the particle swarm optimization algorithm gives a RI of 
makespan of 8.44% and the hybrid DEPSO algorithm gives a RI of makespan of 9.96%. 
 Although the hybrid DEPSO algorithm demonstrated an outstanding ability to solve 
the problem, it is possible to modify the differential evolution algorithm or the particle swarm 
optimization algorithm and use other meta-heuristics or hybrid methods to improve solutions. 
All three methods could minimize the makespan. The hybrid DEPSO algorithm gave the 
best answer by reducing the time to complete the work by 9.96% relative to current practice. 
Future research should consider the start time of machines for cultivation and include the 
distance between field i and field j for each cultivation process. The approach applied in this 
study can extended to other other agricultural industries.
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