Exploring the Sources of PM₁₀ Burning-Season Haze in Northern Thailand Using Nuclear Analytical Techniques

Suchart Kiatwattanacharoen^{1,2}, Tippawan Prapamontol^{2*}, Somsorn Singharat³, Somporn Chantara⁴ and Prasak Thavornyutikarn⁴

¹Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

²Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

³Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

⁴Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

*Corresponding author. E-mail: tippawan.prapamontol@cmu.ac.th

https://doi.org/10.12982/CMUJNS.2017.0025

ABSTRACT

This study explored the sources of PM_{10} in the smoke haze during the traditional burning season in northern Thailand by determining the characteristics of the atomic elements in PM_{10} compared to known plant samples. The ambient air was collected from two sites (urban and peri-urban) in the Chiang Mai -Lamphun Basin. This was compared to the characteristics of the leaves from eight agricultural and forest plants predominant in the region: bamboo, grass, teak, yangna, corn, longan, lychee, and rice that were collected and burned in a combustion chamber to collect the resultant PM_{10} . The elements – Al, Si, S, Cl, K, Ca, Ti, Cr, Mn, and Fe – were analyzed by PIXE, SEM-EDS, and µ-SXRF. Morphologies of PM₁₀ particles were analyzed by SEM. The concentrations of the elements in the PM_{10} of the ambient air samples correlated highly with the PM_{10} from the combustion of teak, yangna, and corn leaves. The results of principal component analysis (PCA), correlations, and morphological characteristics analyzed by SEM also showed that the ambient air PM_{10} belonged to the same group as the PM₁₀ from combustion of teak, yangna, and corn. A HYSPLIT trajectory model indicated that the ambient air PM₁₀ in the Chiang Mai - Lamphun Basin was derived primarily from hotspots on the Thai-Myanmar border driven by southwest winds, as well as some hotspots in the basin itself. This study has shown that open burning of plant sources, both forest and agricultural, particularly along the Thai-Myanmar border to the southwest, is a primary source of the smoke haze in the Chiang Mai – Lamphun Basin during the dry season.

Keywords: Smoke haze, PM_{10} , Elements, Plants, PIXE, μ -SXRF, SEM-EDS, Chiang Mai