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ABSTRACT

          In this paper, a new hybrid evolutionary algorithm (HEA) based on evo-
lutionary programming (EP), tabu search (TS) and simulated annealing (SA) is 
proposed to determine the total transfer capability (TTC) of power transfers between 
different control areas in deregulated power systems. The HEA simultaneously 
searches for real power generations except slack bus in a source area, real power 
loads in a sink area and generation bus voltages. Multi-objective optimal power 
flow (OPF) including TTC, system real power loss and penalty functions is used 
to evaluate the feasible maximum TTC value and minimal power loss within real 
and reactive power generation limits, thermal limits, voltage limits and stability 
limits. The proposed algorithm is tested on the modified IEEE 24-bus reliability 
test system (RTS) and compared to other heuristic optimization methods. Test 
results indicate that TTC calculation using the HEA algorithm could enhance 
TTC far more than the other methods, leading to an efficient utilization of the 
existing power systems.

Key words: Hybrid Evolutionary Algorithm, Optimal Power Flow, Total Transfer 
Capability

INTRODUCTION

          Available transfer capability (ATC) is a measure of the transfer capability 
remaining in a physical transmission network for further commercial activity over 
and above already-committed uses (NERC, 1996). It is required to be calculated 
for each control area and posted on a public communication system to enhance the 
open-access of a transmission network by providing a market signal of the capability 
of transmission systems to deliver electric energy (FERC, 1996). Mathematically, 
ATC is defined as the total transfer capability (TTC) less the transmission reliabil-
ity margin (TRM), and less the sum of the capacity benefit margin (CBM) and the 
existing transmission commitments (ETC).

          Total transfer capability (TTC) is the main component for the ATC computa-
tion. TTC is defined as the amount of electric power that can be transferred over 
the interconnected transmission network in a reliable manner while meeting all of a 
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specific set of defined pre- and post-contingency system conditions (NERC, 1996). 
Determination of TTC has been an area of active research in recent years. Wide 
varieties of mathematical methods such as linear ATC (LATC) (Ejebe et al., 2000), 
continuation power flow (CPF) (Ejebe et al., 1998) and repetitive power flow (RPF) 
(Gravener and Nwankpa, 1999) methods have been developed for calculating TTC. 
The LATC is based on linear incremental dc power flow approximation, ignoring 
voltage and reactive power effects. Therefore, it may lead to unacceptable error, 
especially in a stressed system with insufficient reactive power support and voltage 
control. To increase a certain power transfer, CPF and RPF methods use a common 
loading factor for a specific cluster of generators and loads which may lead to a 
conservative TTC value because these methods do not result in the optimal genera-
tion, loading and generator bus voltages.

          In addition, optimal power flow (OPF) based methods which can be implement-
ed by many optimization techniques such as transfer-based security constrained OPF 
(Ou and Singh, 2002), neural networks (Luo et al., 2000) and sequential quadratic 
programming (Shaaban et al., 2003) have been proposed for TTC calculations with 
various degrees of success. These methods require convexity of objective function 
to obtain the optimal solution. However, the OPF problem is generally nonlinear 
and non-convex optimization problem and, as a result, many local solutions may 
exist especially in highly-nonlinear systems. Therefore, conventional optimization 
methods may converge to local optimal solutions or diverge altogether (Lai, 1998; 
Wong et al., 2003).

          With the advent of evolutionary computation (EC), EC-based methods, 
which use the mechanic of evolution to find the global optimal solution of complex 
optimization problems, have been successfully applied to various areas of power 
systems such as economic dispatch, reactive power planning and OPF problems 
(Back et al., 1997; Lai, 1998). In this paper, a new hybrid evolutionary algorithm 
(HEA) is proposed to determine TTC of power transactions between different control 
areas without violating system constraints. The proposed method is tested on the 
modified IEEE 24-bus reliability test system (RTS) and compared to evolutionary 
programming (EP) (Ongsakul and Jirapong, 2004), tabu search (TS), hybrid TS and 
simulated annealing (TS/SA) (Ongsakul and Bhasaputra, 2002) and improved EP 
(IEP) (Ongsakul and Tantimaporn, 2006) methods.

PROBLEM FORMULATION

          Multi-objective OPF including TTC, transmission system real power loss 
and penalty functions in (1) is used to evaluate the feasible TTC value that can be 
transferred from a specific set of generators in a source area to loads in a sink area 
within real and reactive power generation limits, thermal limits, voltage limits and 
steady-state stability limits.
      
          Maximize (1)
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          Subject to (2)
  
                                                                                                                               (3)
     
                   ∀i ∈ NG (4)
                   ∀i ∈ NG (5)
                   ∀i ∈ N (6)
                   ∀i ∈ NL (7)
                   ∀i ∈ N (8)
                   ∀i ∈ NL (9)
Where
          F:                      multi-objective function,
          PF:                    penalty function,
Input Variables
                           :        lower and upper limits of real power generation at bus i,
                           :        lower and upper limits of reactive power generation at bus i,
                           :        lower and upper limits of voltage magnitude at bus i,
                 :                  ith line or transformer loading limit,
                 :                  critical angle difference between bus i and j,
           Yij , θij :             magnitude and angle of the ijth element in bus admittance  
                                    matrix,
          N, NL:               number of buses and branches,
          NG, ND:            number of generator and load buses,
          NG_SCE:          number of generator buses in a source area,
          ND_SNK:          number of load buses in a sink area,
State Variables
          Vi , Vj :               voltage magnitudes at bus i and j,
          δi , δj :               voltage angles of bus i and j,
          PV1 , QG1 :         real and reactive power generations at slack bus,
Output Variables
          PGi , QGi :          real and reactive power generations at bus i,
          PDi , QDi :          real and reactive loads at bus i,
          |SLi| :                  ith line or transformer loading,
          VCPIi:               voltage collapse proximity indicator at bus i, and
          |δij| :                   angle difference between bus i and j.
      
          Voltage collapse proximity indicator (VCPI) is used to directly determine volt-
age collapse conditions within voltage stability limits. The procedure for calculating 
VCPI can be found in Chebbo et al., (1992). Angle stability constraints considered 
can be either static (Singh et al., 2001) or dynamic (Yue et al., 2003). This paper 
considers only static angle stability constraint. Critical angle displacement is used 
as a criterion to determine steady-state angle stability limit. For a reasonable level of 
typical heavy line loading situations, it is assumed that angle difference between bus 
i and j across a transmission line is kept within a critical angle difference, which is 
44° as recommended in Taylor (1994). Voltage and angle stability limits are treated 
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as OPF variables in (8) and (9), respectively. During the optimization, inequality 
constraints of state variables including bus voltage magnitudes and real power gen-
eration at slack bus and output variables including reactive power generation and 
line or transformer loading are enforced, using a penalty function in (10).

                                                                                                                             (10)

(11)

Where
kp, kq, kv, ks: penalty coefficient for real power generation at slack bus, reactive power 

generation of all PV buses and slack bus, bus voltage magnitude and 
line loading, respectively, and

xmin, xmax : lower and upper limits of variable x.
          A multilateral transaction trading between source and sink areas is considered. 
Mathematically, a multilateral transaction involving several sellers and buyers can 
be expressed as:

(12)

Where
PGi :       real power generation at bus i in a source area excluding slack bus,
PDj :       real power load at bus j in a sink area,
S :          set of sellers who sell the power to buyers, and
B :          set of buyers who buy the power from sellers.
          The sum of real power loads in the sink area at the point of maximum power 
transfer is defined as the TTC value. Contingency analysis is also considered in the 
proposed model. Considering base case configuration, let TTC0 be the maximum 
amount of power transfer without contingency constraints. Similarly, let TTCk be the 
maximum amount of power transfer under the contingency k. Therefore, a feasible 
contingency TTC value is given in (13).

                TTC = Min{TTC0 , TTCk} (13)

HYBRID EVOLUTIONARY ALGORITHM

          To improve the robustness of EC techniques, a new hybrid evolutionary algo-
rithm (HEA) integrating EP, TS and SA methods is proposed. The HEA algorithm 
has special features and merits described as follows.
(i)  Multiple population search with various mutation operators is designed to en-

hance search diversity and improve population update, providing higher quality 
of solutions than those from single population search.

k
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(ii)  Reassignment strategy is carried out to fuse and exchange the search informa-
tion of all subpopulations so that premature convergence caused by consistency 
of individuals in a single population will be alleviated.

(iii)  Selection with a probabilistic updating strategy based on TS algorithm and 
annealing schedule of SA is applied to avoid dependency on fitness function 
and to avoid being trapped in local optimal solutions.

(iv)  The algorithm can easily facilitate parallel implementation on parallel com-
puters to reduce the elapsed time without sacrificing the quality of solution.

          The proposed HEA algorithm is used to simultaneously search for real power 
generations in a source area excluding slack bus, generation bus voltages and real 
power loads in a sink area for determining the feasible TTC value. A flowchart of 
the HEA algorithm is shown in Figure 1, which can be explained as follows.

          Representation of solution: Each individual consists of OPF control variables 
coded by real number. The whole population P is divided into M subpopulations 
according to the number of mutation operators used. The pth individual in a popula-
tion is represented by a trial vector in (14).
                  

(14)

Where
Sp:          trial solution vector of the pth individual in a population, and
VGi:        voltage magnitude of generator at bus i including slack bus.

          Initialization: Each element of the trial vector is initialized randomly within 
its search space by using uniform random number distribution in (15).

                                                                                                                             (15)

Where
xi :           ith element of the individual in a population,
             : lower and upper limits of the ith element of the individual, and
u:            uniform random number in the interval [0,1].

          Power flow solution: During iterations, a full AC Newton-Raphson (NR) 
power flow analysis is used to check the feasibility of each individual solution.

          Fitness function: The objective function in (1) is taken as the fitness function 
of the HEA algorithm.

          Cooling schedule procedure: The initial temperature of each subpopulation 
is expressed in (16). The temperature is cooled down by the temperature annealing 
function or cooling schedule in (17).
   
                                                                                                                             (16)

                                                                                                                             (17)
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Figure 1.  Flowchart of the HEA algorithm.
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Where
T0,m:       initial temperature of the mth subpopulation,
Fmin,m:    objective value of the worst individual in the mth subpopulation,
Fmax,m:   objective value of the best individual in the mth subpopulation,
pr:          probability of accepting the worst individual with respect to the best indi-
              vidual.
Tr,m:        annealing temperature of the mth subpopulation after the rth reassign-
              ment,
λ:           rate of cooling, and
r:            iteration counter of reassignment.

          Mutation: In different subpopulations, different mutation operators are used 
to create new offspring subpopulation so that many hybrid operators are applied to 
enhance the search diversity. Two mutation operators including Gaussian and Cauchy 
combined with cooling schedule of SA are applied. Each element of the offspring 
individual is calculated in (18).

(18)
                                                                                                                                   

(19)

Where
x´k,i:       ith element of the kth offspring individual,
xk,i:         ith element of the kth parent individual,
σk,i:        mutation step size for the ith element of the kth individual,
ξm:         mutation operator of the mth subpopulation e.g. N(0,1), C(0,1), etc.,
N(0,1):   Gaussian random number with mean 0 and standard deviation 1,
C(0,1):   Cauchy random number with parameter t=1, and
a:           positive number slightly less than one.

          Tabu list: Tabu list is a finite length one-in one-out first-in first-out structure, 
which records a set of current best solutions visited. A new trial vector is placed on 
top of the list and the oldest trial vector is taken out of the list.

          Aspiration criterion: The aspiration criterion adopts a probabilistic ac-
ceptance criterion of SA in (20). The tabu restriction is overridden if the aspiration 
criterion is satisfied. When the probabilistic acceptance criterion is higher than a 
uniform randomly generated variable in the interval [0,1], the tabu restriction is 
overruled.

(20)

Where
pk,m:       probabilistic acceptance criterion of the kth offspring individual within the 

mth subpopulation, and
∆:           difference of objective values between the kth offspring individual and its 

corresponding parent individual.
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          Reassignment strategy: Tournament scheme is used to select new current 
parent population from the combined population of current parent (S1,curr,…, SM,curr) 
and new offspring (S1,new,…, SM,new) individuals of all subpopulations (Ongsakul 
and Tantimaporn, 2006). Each individual in the combined population is assigned a 
weight value according to the competition in (21).

(21)

Where
wk:         weight value of the kth individual in the combined population,
Fk:         fitness value of the kth individual in the combined population,
Fr:          fitness value of the rth opponent randomly selected from the combined 

population based on                          , and
Nt:          number of competitors.

          After sorting the combined population of 2M individuals in the descending 
order of weight values, each new current parent solution individual of all subpopu-
lations will be randomly selected from a set of the first Mth sorted best solution 
individuals.

          Termination criteria: There are three termination criteria in the proposed 
HEA algorithm. The first termination criterion is set as the maximum number of 
generations of each subpopulation and the second termination criterion is the number 
of reassignment required. The algorithm will be stopped if there is no improvement 
of the best fitness within 50 generations as the third termination criterion.

CASE STUDY AND TEST RESULTS

          The modified IEEE 24-bus RTS, which is partitioned into 3 areas as shown 
in Figure 2, is used to demonstrate the TTC calculation using the proposed HEA 
method. The modified system data are given in Ou and Singh (2002). A multilateral 
transaction from area 1 to 2 with contingency constraints is considered. Only the 
outage of the largest generator in each area and the outage of tie lines are included 
in the contingency list. The HEA algorithm is implemented using MATLAB ver-
sion 6.5 on an AMD Athlon64 3200+ computer with 512 MB memory. Parameter 
settings of the HEA algorithm suggested in Back et al. (1997) and Lai (1998) are 
utilized. Test results from HEA are compared to those from EP, TS, TS/SA and IEP 
methods.

          Normal case TTC using HEA method is 716.82 MW. Considering the pre-
specified contingency constraints as shown in Table 1, contingency TTC value 
using HEA is 635.44 MW without violating system constraints, which is 0.75%, 
0.97%, 0.73% and 0.37% higher than those from EP, TS, TS/SA and IEP methods, 
respectively. In addition, the TTC value is decreased by 11.35% compared to that 
without contingency constraints or normal case. The critical contingency case is the 
interconnected line 14-11 between those two areas outage. Even though test results 
indicate a marginal improvement of HEA over the other methods, the higher TTC 
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for power transfer of HEA than the other methods could lead to a substantial cost 
savings of daily energy trading between different control areas under deregulated 
power systems.

          The comparisons of TTC results and CPU times evaluated by EP, TS, TS/SA, 
IEP and HEA methods from 30 runs are shown in Table 2. Test results indicate that 
single-population search of EP, TS and TS/SA is less effective than multi-population 
search of IEP and HEA methods. The proposed HEA method can obtain better results 
on the best, average and the worst TTC values than those from the other optimization 
methods because HEA algorithm uses the selection mechanism with a probabilistic 
updating strategy based on TS and SA algorithms to avoid dependency on fitness 
function and to escape from the entrapment in local optimal solutions. Furthermore, 
the variation of the HEA best solution is smaller as evidenced by a smaller standard 
deviation than the other methods, leading to a more-stable HEA algorithm.

          CPU times of IEP and HEA methods are higher than those from EP, TS and 
TS/SA because the best solutions of IEP and HEA are obtained based on the accep-
tance probability, which depends on the improvement of the offspringís objective 
value and the annealing procedure of SA algorithm. In addition, the reassignment 
strategy requires additional computing effort. However, both IEP and HEA methods 
can easily facilitate parallel implementation, reducing elapsed time without sacrific-
ing the quality of solution. 

          To compare the convergence characteristic, IEP and HEA algorithms utilize a 
probabilistic updating strategy based on annealing schedule of SA, resulting in more 
generations required and slower convergence characteristic than EP, TS and TS/SA 
methods as shown in Figure 3. However, the convergence speed of HEA is improved 
by introducing a flexible memory of search history of TS to prevent cycling and to 
avoid entrapment in local optima compared to IEP algorithm.

Figure 2. Diagram of the modified IEEE 24-bus RTS.
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Figure 3. Convergence characteristic of solutions.

Table 1. TTC level and contingency TTC value of multilateral transaction on the 
modified IEEE 24-bus RTS.

Case
TTC Level (MW)

EP TS TS/SA IEP HEA

Normal 713.99 714.90 716.01 714.80 716.82

Largest gen. in area 1 outage 717.19 714.12 715.00 715.02 716.26

Largest gen. in area 2 outage 731.23 727.36 729.04 743.25 743.77

Line 21-22 outage 711.75 699.90 710.35 713.15 715.68

Line 17-22 outage 714.68 707.01 716.65 716.98 718.24

Line 19-20 outage 700.56 701.32 707.64 705.99 717.52

Line 14-11 outage 630.73 629.30 630.83 633.11 635.44

Contingency TTC Value (MW) 630.73 629.30 630.83 633.11 635.44

Table 2. Optimal solutions of multilateral transaction on the modified IEEE 24-bus 
RTS.

TTC Value (MW) EP TS TS/SA IEP HEA

Best 630.73 629.3 630.83 633.11 635.44

Average 619.74 593.36 612.02 622.89 624.86

Worst 570.5 524.53 552.84 606.91 607.91

Standard Deviation 14.84 31.51 19.98 7.14 6.83

CPU Time (minute) 0.38 0.43 0.35 0.56 0.45
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CONCLUSION

          In this paper, the proposed HEA algorithm is effectively implemented to deter-
mine TTC value of power transactions between different control areas. Test results 
indicate that the HEA algorithm can effectively re-dispatch real power generations 
except slack bus in a source area, increment of real power loads in a sink area and 
optimal setting of generation bus voltages, leading to an efficient utilization of the 
existing power systems. In addition, the algorithm can consider additional voltage 
and angle stability limits, resulting in a higher trading level of energy transactions 
in secured power systems.
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