RBC Count and Its Differentiation Potential among α-Thalassemia (SEA type), β-Thalassemia and HbE Heterozygotes

Thanusak Tatu^{1,3*}, Daraporn Prakunwisit¹, Sumonthida Sayajak¹, Sawitree Chiampanichayakul^{1,3} and Watchara Kasinrerk^{2,3}

¹Research Center for Hematology and Health Technology, Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

²Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

³Biomedical Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

*Corresponding author. E-mail: <u>asittt@chiangmai.ac.th</u>

ABSTRACT

In order to determine the differentiation potential of red blood cell parameters between severe and mild form of thalassemia heterozygotes, we have carried out automated blood cell analysis, one-tube osmotic fragility test (OFT), Hb H inclusion body test, hemoglobin identification by high-performance liquid chromatography (HPLC) and α -thalassemia 1 (Southeast Asian [SEA] type) genotyping in 58 thalassemia heterozygotes. Red blood cell (RBC) parameters in different thalassemia heterozygotes were compared. No difference in red blood cell (RBC) count was observed between α -thalassemia 1 (SEA type) and β -thalassemia heterozygotes. RBC count was significantly higher in α -thalassemia 1 heterozygotes (SEA type) and β -thalassemia heterozygotes than that in HbE heterozygotes. We concluded that the RBC count could not differentiate α -thalassemia 1 heterozygote (SEA type) from β -thalassemia heterozygote. However, if considered with MCV, MCH, MCHC and RDW, it provided great values in screening severe α -thalassemia 1 (SEA type) and β -thalassemia heterozygotes out of HbE heterozygote.

Key words : Red blood cell parameters, Red blood cell indices, Thalassemia screen, Thalassemia heterozygote, HbE heterozygote

INTRODUCTION

Thalassemia is a syndrome characterised by reduction or absence of globin chain synthesis, comprising two common types: α - and β -thalassemia. α -thalassemia is generally caused by deletion of α -globin gene(s) resulting in 2 genotypes: – and - α for severe α -thalassemia 1 and mild α -thalassemia 2 forms, respectively. β -thalassemia, on the other hand, is mostly resulted from point mutations within and flanking structural β -globin gene which also gives rise to 2 sub-types which

۲

۲