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ABSTRACT
In this paper we have studied the compound ultra-hyperbolic equation of the form

∑ cr 
   r u(x) = f(x),

where   r is the ultra-hyperbolic operator iterated r-times (r = 0, 1, 2, ..., m), f is a given
generalized function, u is an unknown function, x = (x1, x2, ..., xn) ∈    n the Euclidean
n-dimensional spaces and cr is a constant.

It is found that the equation above has a weak solution u(x) which is of the form
Marcel Riesz’s kernel and moreover, such a solution is unique.

1. INTRODUCTION
Consider the equation

k u(x) = f(x), (1.1)

where u and f are some generalized functions, and    k is the ultra-hyperbolic operator iterated
k -times and is defined by

k =            +         + ... +         -            -            - ... -               , (1.2)

p + q = n is the dimension of the space    n , x = (x
1
, x

2
, ..., x

n
) ∈    n, and k is a nonnegative

integer.
Trione (1987) has shown that (1.1) has u(x) = R

2k 
(x) as a unique elementary solution

where R
2k 

(x) is defined by (2.1) with α = 2k. Moreover, Tellez (1994) has proved that R
2k 

(x)
exists only for case p is odd with p + q = n.

In this paper we develop the equation (1.1) to the form

∑ c
r   

  r u(x) = f (x), (1.3)

which is called the compound ultra-hyperbolic equation and by convention    0 u(x) = u (x).
We use the method of convolution of tempered distribution to find the solution of equation
(1.3).
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2. PRELIMINARIES
Definition 2.1 Let  x = (x

1
, x

2
, ..., x

n
) be a point of the n-dimensional Euclidean space    n and

write

V = x
1
2 + x

2
2 + ... + x2

p
 - x2

p+1
 - x2

p+2
 - ... - x2

p+q’
 p + q = n,

Define Γ+ = {x ∈    n : x
1
 > 0, V > 0}, which designates the interior of the forward cone, and

Γ+ designates of its closure, and the following functions introduced by Nozaki (1964) that

for  x ∈ Γ+,
                         Rα (x) = (2.1)
                                                     0 for  x ∉ Γ+.

Rα (x) is called the ultra-hyperbolic kernel of Marcel Riesz.

Here α is a complex parameter and n is the dimension of the space. The constant
K

n
 (α) is defined by

π  2 Γ (               ) Γ (         ) Γ(α)
K

n
(α) = (2.2)

      Γ (               ) Γ (         )

and p is the number of positive terms of

V = x2
1
 + x2

2
 + ... + x2

p
 - x2

p+1
 - x2

p+2
 - ... - x2

p+q 
,  p + q = n, (2.3)

and let supp Rα (x) ⊂ Γ +.

Now Rα (x) is an ordinary function if Re(α) ≥ n, and is a distribution of α if Re(α) < n.

Definition 2.2  A generalized function u(x) is called an elementary solution of n-dimensional
ultra-hyperbolic operator iterated k-times if u(x) satisfies the equation   k u(x) = δ, where   k

defined by (1.2) and δ is the Dirac-delta distribution.

Lemma 2.1 Rα (x) is a homogeneous distribution of order α - n. In particular, it is a tempered
distribution.

V   2
 α – n

K
n
 (α)

α + 2 - n        1 - αn – 1

  2                 2
2 + α - p        p - α

  2                 2
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Proof.  We need to show that Rα(x) satisfies the Euler equation

∑ x
i
             Rα(x) = (α - n)Rα(x).

Now

∑ x
i
             Rα(x) =             ∑ x

i
        (x

1
2 + ... + x2

p
 - x2

p+1
 - ... - x2

p+q
)

=            (α - n) (x
1
2 + ... + x2

p
 - x2

p+1
 - ... - x2

p+q
)

x (x
1
2 + ... + x2

p
 - x2

p+1
 - ... - x2

p+q
)

=            (α - n) (x
1
2 + ... + x2

p
 - x2

p+1
 - ... - x2

p+q
)

= (α - n)Rα(x).

Hence Rα(x) is a homogeneous distribution of order α - n. Donoghue (1969) proved that
every homogeneous distribution is a tempered distribution. So Rα(x) is a tempered
distribution. This is complete of proof.

Lemma 2.2  The function u(x) = R
2k 

(x) with α = 2k of (2.1) is the unique elementary solution
of the equation   k u(x) = δ

Proof.  See Trione (1987) and Tellez (1994).

Lemma 2.3  Let Rα(x) and K
n (α) be defined by (2.1) and (2.2). Then

(a) K
n
(α + 2) = α (α + 2 - n) K

n
 (α),

(b) R
-2k

(x) =   k δ, where k is a nonnegative integer,
(c)   k Rα (x) = Rα-2k

(x), where k is a nonnegative integer.

Proof. See Trione (1987).
Moreover, from (b) we obtain R

0
(x) = δ and also from (c)

k R
2k
(x) = R

0
(x) = δ

Lemma 2.4  (The convolution of tempered distributions)
(a) (   kδ)*u(x) =    k u(x) where u is any tempered distribution.
(b) Let Rα (x) and Rβ (x) be defined by (2.1) then Rα (x) * Rβ (x) exists and

is a tempered distribution.
(c) Let Rα (x) and Rβ (x) be defined by (2.1) and if Rα (x) * Rβ (x) = δ then

Rα (x) is an inverse of Rβ (x) in the convolution algebra, denoted by
Rα (x) = Rβ

∗−1  (x), moreover Rβ
∗−1  (x) is unique.

n

i=1

  ∂2

∂x
i

  ∂
∂x

i

n

i=1

  1
K

n
(α)

n

i=1

  ∂
∂x

i

α – n

2

α – n - 2

2
  1

K
n
(α)

α – n

2
  1

K
n
(α)



CMU. Journal (2002) Vol. 1(3)➔212

Proof.
(a) First, we consider the case k = 1, now

δ = ∑             - ∑         , p + q = n

and let ϕ (x) be a testing function in the Schwartz space s. By the definition of convolution,
we have

< (  δ) *u(x),ϕ (x) > = < u(x),<   δ (y), ϕ (x + y) >>

= < u(x),< ∑             -  ∑             ,ϕ (x + y) >>

= < u(x),< δ (y), ∑                 -  ∑                  >>

= < u(x),< ∑             -  ∑              >

= < ∑             -  ∑             ,ϕ (x) >

= <   u(x),ϕ (x) >.

It follows that (  δ)*u(x) =   u(x). Similarly for any k, we can show that (   k δ)*u(x) =   k u(x).

(b) Since Rα(x) and Rβ (x) are tempered distributions by Lemma 2.1. Now choose supp Rα(x)
= K⊂  Γ+ where K is a compact set and Γ+ appear in Definition 2.1. Hence, by Donoghue
(1969), Rα(x)*Rβ (x) exists and is tempered distribution.

(c) Since Rα(x) and Rβ (x) are tempered distributions with compact supports, thus Rα(x) and
Rβ (x) are the elements of space of convolution algebra U ' of distribution. Now Rα(x)*
Rβ (x) = δ then by Zemanain (1965) show that Rα(x) = Rβ

∗−1  (x) is a unique inverse.

For example, if α = 2k where k is nonnegative integer and by Kananthai (1997), we
have R

-2k 
(x) is an inverse of R

2k 
(x), that is

R
2k 
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-2k+2k 
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3. RESULTS
Theorem 3.1 Given the compound ultra-hyperbolic equation

∑ c
r   

  r u(x) = f (x), (3.1)

where    r is the ultra-hyperbolic operator iterated r -times (r = 0,1,2,...,m) defined by (1.2),
f is a tempered distribution, x = (x

1
,x

2
,...,x

n
) ∈     n the Euclidean n-dimensional spaces and n

is odd and c
r
 is a constant. Then (3.1) has a unique weak solution

u(x) = f (x)*R
2m

(x)*(c
m
R

0
(x) + W (x)R

2
(x))*-1 (3.2)

where

W (x) = c
m-1

 + c
m-2 

.              + c
m-3 

.                            + ...

+c
0
. (3.3)

and V defined by (2.3) and (c
m 

R
0 
(x)+W (x) R

2
(x))*-1 is an inverse of c

m 
R

0 
(x)+W (x) R

2
(x).

Proof. By Lemma 2.4(a), equation (3.1) can be written as

(c
m
   m δ + c

m-1
    m-1δ+...+c

1
  δ +c

0
δ)*u(x) = f (x)

Convolving both sides by R
2m

(x) defined by (2.1), we obtain

(c
m
    m R

2m
(x) +c

m-1
    m-1 R

2m
(x) +...+ c

1
   R

2m
(x) +c

0
R

2m
(x))*u(x) = f (x)*R

2m
(x)

By Lemma 2.2, Lemma 2.3(c), we obtain

(c
m
δ + c

m-1
 R

2
(x) +c

m-2
R

4
(x) +...+ c

1
   R

2(m-1)
(x) +c

0
R

2m
(x))*u(x) = f (x)*R

2m
(x)      (3.4)

By Lemma 2.3(a), we obtain

R
4
(x) =            =                            = R

2
(x).

Similarly,

R
6
(x) = R

2
(x).

R
8
(x) = R

2
(x).

R
2m

(x) = R
2
(x).

m

r=0

V
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V 2
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V m-1
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V       .V
  2(2+2- n)K

n
(2)

V 2
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V
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n
(4)
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2

2 – n

2 V
  2(4 - n)

V 3

  2.4.6(4 - n)(6 - n)(8 - n)

V m -1
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..
.
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Thus we obtain the function W (x) of (3.3). Now W (x) is continuous and infinitely
differentiable in classical sense for n is odd. Since R

2
(x) is a tempered distribution with

compact support, hence W (x)R
2
(x) also is tempered distribution with compact support and

so c
m
R

0
(x) +W (x)R

2
(x). By Lemma 2.4(c), c

m
R

0
(x) +W (x)R

2
(x) has a unique inverse denoted

by (c
m
R

0
(x) +W (x)R

2
(x))*-1.

Now (3.4) can be written as

(c
m
R

0
(x) +W (x)R

2
(x))*u(x) = f (x)*R

2m
(x), R

0
(x) = δ

Convolving both sides by (c
m
R

0
(x) +W (x)R

2
(x))*-1, we obtain

u(x) = f (x)*R
2m

(x)* (c
m
R

0
(x) +W (x)R

2
(x))*-1

Since R
2m

(x) is a unique by Lemma 2.2 and (c
m
R

0
(x) +W (x)R

2
(x))*-1 also a unique by Lemma

2.4(c), it follows that u(x) is a unique weak solution of (3.1) with odd dimensional n. This
completes the proof.
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