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ABSTRACT
I n this paper we have studied the compound ultra-hyperbolic equation of the form

chr 0" u(x) = f(x),

where " is the ultra-hyperbolic operator iterated r-times (r =0, 1, 2, ..., m), f isa given
generalized function, u is an unknown function, x = (X, X,, ..., X.) 00" the Euclidean
n-dimensional spacesand c, isa constant.

It is found that the equation above has a weak solution u(x) which is of the form
Marcel Riesz'skernel and moreover, such a solution is unique.

1. INTRODUCTION
Consider the equation

O u(x) = f(x), (1.1)

whereu andf are some generalized functions, arids the ultra-hyperbolic operator iterated
k -times and is defined by

Dk:[a2+a?++a g 3 9
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p

}k . (1.2)

p+2 p+q

p + q= nis the dimension of the space , x = (x, X,, ..., X) O[", andk is a nonnegative
integer.

Trione (1987) has shown that (1.1) h&®) = R, (X) as a unique elementary solution
whereR, (x) is defined by (2.1) witlw = 2k. Moreover, Tellez (1994) has proved tRgt(x)
exists only for casp is odd withp + g = n.

In this paper we develop the equation (1.1) to the form

_EO ¢ 0 u() = (%), (1.3)

which is calledhe compound ultra-hyperbolic equation and by convention® u(x) = u (x).

We use the method of convolution of tempered distribution to find the solution of equation

(1.3).
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2. PRELIMINARIES

Definition 2.1 Let x = (x,, X,, ...,X ) be a point of the-dimensional Euclidean spaceand
write

= y?2 2 2 _ w2 -¥2 - -x2 =
VEXZHX2 X =X =X, X PHa=n,

Definel,= {x00":x >0,V > 0}, which designates the interior of the forward cone, and
I designates of its closure, and the following functions introduced by Nozaki (1964) that

%
\K/ (@) for xoOrs,,
R (¥ = { n (2.1)
0 fori I ..

R, (¥) is calledthe ultra-hyperbolic kernel of Marcel Riesz.

Here a is a complex parameter andis the dimension of the space. The constant
K, (a) is defined by

per @20l g

K () = 2 2 2.2)
rrePyress )

andp is the number of positive terms of
V=3 3+ 0 - - - X, PR gD, (2.3)

and let supfR (x) [T +.
Now R (x) is an ordinary function if Ref) > n, and is a distribution af if Re(a) <n.
Definition 2.2 A generalized function(x) is calledan elementary solution of n-dimensional

ultra-hyperbolic operator iteratdetimes if u(x) satisfies the equatiort u(x) = o, where ¥
defined by (1.2) andis the Dirac-delta distribution.

Lemma2.1R (x)is a homogeneous distribution of ordern. In particular, it is a tempered
distribution.
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Proof. We need to show th& (x) satisfies the Euler equation

n

Sx P RM®=(a-nRX.

=1 0X
Now
n 0 I o) 2 2 2 2\ 5
Xx 2 R(X= = X L EXE =X - =X
2% 0x, W0 K, (a) =" 0x & P oo
1 2 2 2 2 a-n-2
= I@ (a-n)(x2+.. XX -xp+q) 2
X(XZ+ o+ - - X )
- 1 _ 2 2 _y2 2 an
K (a) (a-n)(x LTS GRED P xp+q) 2
= (a-nR (X).

HenceR (x) is a homogeneous distribution of order n. Donoghue (1969) proved that
every homogeneous distribution is a tempered distributionR $9 is a tempered
distribution. This is complete of proof.

Lemma2.2 The functioru(x) =R, (X) with a = 2k of (2.1) is the unique elementary solution
of the equation* u(x) = o

Proof. See Trione (1987) and Tellez (1994).

Lemma 23 LetR (X) andK (a) be defined by (2.1) and (2.2). Then
(@ K(a+2)=a(a+2-nK (a),

(b) R, (X) =% 4, wherek is a nonnegative integer,

(c) ¥R, () = R_,,(X), wherek is a nonnegative integer.

Proof. See Trione (1987).
Moreover, from (b) we obtaiR (x) = dand also from (c)

TR,(¥) =R(9 =

Lemma 2.4 (The convolution of tempered distributions)

(@) ([@9)*u(x) =[ku(x) whereu is any tempered distribution.

(b) LetR, (X) andRB (X) be defined by (2.1) theR (x) * R, (X) exists and
is a tempered distribution.

(c) LetR, (X) andRB (X) be defined by (2.1) andR, (X) * R, (X) =dthen
R, (X) is an inverse oRﬁ (X) in the convolution algebra, denoted by
R, (X)= Rﬁﬁ‘l (), moreoverRﬁE” (X) is unique.
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Proof.
(a) First, we consider the calse 1, now
LR PT 0
o= yvY . ~-.p+Qg=
- =10X j=§+16xj2 pra=n

and let¢ (x) be a testing function in the Schwartz space s. By the definition of convolution,
we have

<9 *u(®).9 () > =<u(x),<03(y), ¢ (x+y)>>

p ptq 2
= <u(x),< % %Z)g(y) }:%1 aa(j(?(y) ¢ (x+y) >>

= <u(x),< 4 (Y), éa@a())g ) ;52:152‘1’6(;"'3/) 77

=< u(X)’<_§az¢ (X) _p}q az¢ (X) >

=1 0X? j=p+1 asz

_ v Pux) Y Pu(x)
<i:1 ox ngﬂ asz ? >

= <[u(®),¢ () >.

It follows that (Jd)*u(x) =Qu(X). Similarly for anyk, we can show thatif d)* u(x) =% u(x).

(b) SinceR, (X) andR, () are tempered distributions by Lemma 2.1. Now chooseRBy(gp
=KD '+ whereK is a compact set arid appear in Definition 2.1. Hence, by Donoghue
(1969),R (X)*R, (x) exists and is tempered distribution.

(c) SinceR,(x) andRﬁ (X) are tempered distributions with compact supports, (g and
R, () are the elements of space of convolution algébraf distribution. NowR, (x)*
R, (X) = dthen by Zemanain (1965) show tif&(x) = Rﬁﬁ‘l (X) is a unique inverse.

For example, ifa = 2k wherek is nonnegative integer and by Kananthai (1997), we
haveR,, (X) is an inverse oR, (), that is

Ry (9 R, (X) =R, 0 =R, (9 = 0
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3. RESULTS
Theorem 3.1 Given the compound ultra-hyperbolic equation

:Eocr 7 u() = £ (3), 3.1)

where[]" is the ultra-hyperbolic operator iterateetimes ¢ = 0,1,2,..1n) defined by (1.2),
f is a tempered distributior,= (x,,X,,...X ) 00" the Euclideam-dimensional spaces and
is odd anct is a constant. Then (3.1) has a unique weak solution

u(x) =f (x)*R, (x)*(c R,(X) + W (X)R,(x)™ (3.2)
where

c Vi V2
™2 24 n) ™" 2.4(4 -n)(6 -n)

W(x) =c ,+

e Vm—l
0 2.4.6..20- 1)(4 -n)(6 - n)...(2m- )

(3.3)

andV defined by (2.3) ancc( R, (X)+W (x) R,(xX))" is an inverse of R (X)+W (X) R,(X).

Proof. By Lemma 2.4(a), equation (3.1) can be written as
(c,0md+c,  0™o+..4c[10+C,0)* u(x) =f (X)
Convolving both sides bR, (x) defined by (2.1), we obtain
(€, "R () +¢, T™ R, (X) +...+C, IR, (X) +CR, (X))*u(x) = f (})*R, (X)
By Lemma 2.2, Lemma 2.3(c), we obtain
(c0+c, R(X +c R +..+c IR (¥ +cR, (X)) ulx) =f ()*R, (¥  (3.4)

By Lemma 2.3(a), we obtain
4-n 2-n

V2 vy V

RO= @) 2@k @ 9 2@ )

Similarly,

_ V?2
R =RX. 2.4(4 -n)(6 - n)

R =R 2.4.6(4 (6 -n)(8 -n)

. : \/ m-1
Ran®) =R 5 4 260~ 1)(@ -m)(6 -n)...c2m- 1)
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Thus we obtain the functiow (x) of (3.3). NowW (X) is continuous and infinitely
differentiable in classical sense foris odd. SinceR,(x) is a tempered distribution with
compact support, hend¥ (x)R,(x) also is tempered distribution with compact support and
soc R(X) +W (X)R,(x). By Lemma 2.4(c)¢ R (X) +W (X)R,(X) has a unique inverse denoted

by (¢, R,(X) +W (X)R,(x))™*.
Now (3.4) can be written as

(€, R *W(XR,(x))*u(¥) =f (})*R,, (x), Ry(¥) = o
Convolving both sides bfc R (X) +W (X)R,(x))"*, we obtain

u(x) =1 (¥)* R, (9% (c,R,(X) +W (X)R,(x))™*

SinceR, (X) is a unique by Lemma 2.2 atg R (X) +W (X)R,(X))* also a unique by Lemma
2.4(c), it follows thau(x) is a unique weak solution of (3.1) with odd dimensionarhis
completes the proof.
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