On the Weak Solution of the Compound Ultra-hyperbolic Equation

Amnuay Kananthai* and Kamsing Nonlaopon

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiangmai 50200, Thailand

*Corresponding author. E-mail: <u>malamnka@science.cmu.ac.th</u>

ABSTRACT

In this paper we have studied the compound ultra-hyperbolic equation of the form

$$\sum_{r=0}^m c_r \, \Box^r \, u(x) = f(x),$$

where \Box^r is the ultra-hyperbolic operator iterated r-times (r = 0, 1, 2, ..., m), f is a given generalized function, u is an unknown function, $x = (x_1, x_2, ..., x_n) \in \Box^n$ the Euclidean n-dimensional spaces and c_r is a constant.

It is found that the equation above has a weak solution u(x) which is of the form Marcel Riesz's kernel and moreover, such a solution is unique.

1. INTRODUCTION

Consider the equation

$$\Box^k u(x) = f(x), \tag{1.1}$$

where *u* and *f* are some generalized functions, and \Box^k is the ultra-hyperbolic operator iterated *k* -times and is defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}, \quad (1.2)$$

p + q = n is the dimension of the space \Box^n , $x = (x_1, x_2, ..., x_n) \in \Box^n$, and k is a nonnegative integer.

Trione (1987) has shown that (1.1) has $u(x) = R_{2k}(x)$ as a unique elementary solution where $R_{2k}(x)$ is defined by (2.1) with $\alpha = 2k$. Moreover, Tellez (1994) has proved that $R_{2k}(x)$ exists only for case *p* is odd with p + q = n.

In this paper we develop the equation (1.1) to the form

$$\sum_{r=0}^{m} c_{r} \Box^{r} u(x) = f(x), \qquad (1.3)$$

which is called *the compound ultra-hyperbolic equation* and by convention $\Box^0 u(x) = u(x)$. We use the method of convolution of tempered distribution to find the solution of equation (1.3).

2. PRELIMINARIES

Definition 2.1 Let $x = (x_1, x_2, ..., x_n)$ be a point of the *n*-dimensional Euclidean space \square^n and write

$$V = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \dots - x_{p+q}^2, p + q = n,$$

Define $\Gamma_{+} = \{x \in \square^{n} : x_{1} > 0, V > 0\}$, which designates the interior of the forward cone, and $\overline{\Gamma}_{+}$ designates of its closure, and the following functions introduced by Nozaki (1964) that

$$R_{\alpha}(x) = \begin{cases} \frac{V^{\frac{\alpha-n}{2}}}{K_{n}(\alpha)} & \text{for } x \in \Gamma_{+}, \\ 0 & \text{for } x \notin \Gamma_{+}. \end{cases}$$
(2.1)

 $R_{\alpha}(x)$ is called the ultra-hyperbolic kernel of Marcel Riesz.

Here α is a complex parameter and *n* is the dimension of the space. The constant $K_n(\alpha)$ is defined by

$$K_{n}(\alpha) = \frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{\alpha+2-n}{2}\right) \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)}$$
(2.2)

and p is the number of positive terms of

$$V = x_{1}^{2} + x_{2}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - x_{p+2}^{2} - \dots - x_{p+q}^{2}, \quad p + q = n,$$
(2.3)

and let supp $R_{\alpha}(x) \subset \overline{\Gamma}_+$.

Now $R_{\alpha}(x)$ is an ordinary function if $\operatorname{Re}(\alpha) \ge n$, and is a distribution of α if $\operatorname{Re}(\alpha) < n$.

Definition 2.2 A generalized function u(x) is called *an elementary solution* of *n*-dimensional ultra-hyperbolic operator iterated *k*-times if u(x) satisfies the equation $\Box^k u(x) = \delta$, where \Box^k defined by (1.2) and δ is the Dirac-delta distribution.

Lemma 2.1 $R_{\alpha}(x)$ is a homogeneous distribution of order α - *n*. In particular, it is a tempered distribution.

Proof. We need to show that $R_{\alpha}(x)$ satisfies the Euler equation

$$\sum_{i=1}^{n} x_i \frac{\partial^2}{\partial x_i} R_{\alpha}(x) = (\alpha - n) R_{\alpha}(x).$$

Now

$$\begin{split} \sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} R_{\alpha}(x) &= \frac{1}{K_{n}(\alpha)} \sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} (x_{1}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - \dots - x_{p+q}^{2})^{\frac{\alpha - n}{2}} \\ &= \frac{1}{K_{n}(\alpha)} (\alpha - n) (x_{1}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - \dots - x_{p+q}^{2})^{\frac{\alpha - n - 2}{2}} \\ &= x (x_{1}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - \dots - x_{p+q}^{2}) \\ &= \frac{1}{K_{n}(\alpha)} (\alpha - n) (x_{1}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - \dots - x_{p+q}^{2})^{\frac{\alpha - n}{2}} \\ &= (\alpha - n)R_{\alpha}(x). \end{split}$$

Hence $R_{\alpha}(x)$ is a homogeneous distribution of order α - *n*. Donoghue (1969) proved that every homogeneous distribution is a tempered distribution. So $R_{\alpha}(x)$ is a tempered distribution. This is complete of proof.

Lemma 2.2 The function $u(x) = R_{2k}(x)$ with $\alpha = 2k$ of (2.1) is the unique elementary solution of the equation $\Box^k u(x) = \delta$

Proof. See Trione (1987) and Tellez (1994).

Lemma 2.3 Let $R_{\alpha}(x)$ and $K_{n}(\alpha)$ be defined by (2.1) and (2.2). Then (a) $K_{n}(\alpha+2) = \alpha (\alpha+2-n) K_{n}(\alpha)$, (b) $R_{-2k}(x) = \Box^{k} \delta$, where *k* is a nonnegative integer, (c) $\Box^{k} R_{\alpha}(x) = R_{\alpha-2k}(x)$, where *k* is a nonnegative integer.

Proof. See Trione (1987).

Moreover, from (b) we obtain $R_0(x) = \delta$ and also from (c)

$$\Box^k R_{2\nu}(x) = R_0(x) = \delta$$

Lemma 2.4 (The convolution of tempered distributions)

- (a) $(\Box^k \delta)^* u(x) = \Box^k u(x)$ where *u* is any tempered distribution.
- (b) Let $R_{\alpha}(x)$ and $R_{\beta}(x)$ be defined by (2.1) then $R_{\alpha}(x) * R_{\beta}(x)$ exists and is a tempered distribution.
- (c) Let $R_{\alpha}(x)$ and $R_{\beta}(x)$ be defined by (2.1) and if $R_{\alpha}(x) * R_{\beta}(x) = \delta$ then $R_{\alpha}(x)$ is an inverse of $R_{\beta}(x)$ in the convolution algebra, denoted by $R_{\alpha}(x) = R_{\beta}^{*-1}(x)$, moreover $R_{\beta}^{*-1}(x)$ is unique.

Proof.

(a) First, we consider the case k = 1, now

$$\Box \delta = \sum_{i=1}^{p} \frac{\partial^2 \delta}{\partial x_i^2} - \sum_{j=p+1}^{p+q} \frac{\partial^2 \delta}{\partial x_j^2}, p+q=n$$

and let $\varphi(x)$ be a testing function in the Schwartz space s. By the definition of convolution, we have

$$<(\Box\delta) *u(x), \varphi(x) > = < u(x), <\Box\delta(y), \varphi(x+y) >>$$

$$= < u(x), <\sum_{i=1}^{p} \frac{\partial^{2}\delta(y)}{\partial x_{i}^{2}} - \sum_{j=p+1}^{p+q} \frac{\partial^{2}\delta(y)}{\partial x_{j}^{2}}, \varphi(x+y) >>$$

$$= < u(x), <\delta(y), \sum_{i=1}^{p} \frac{\partial^{2}\varphi(x+y)}{\partial x_{i}^{2}} - \sum_{j=p+1}^{p+q} \frac{\partial^{2}\varphi(x+y)}{\partial x_{j}^{2}} >>$$

$$= < u(x), <\sum_{i=1}^{p} \frac{\partial^{2}\varphi(x)}{\partial x_{i}^{2}} - \sum_{j=p+1}^{p+q} \frac{\partial^{2}\varphi(x)}{\partial x_{j}^{2}} >$$

$$= <\sum_{i=1}^{p} \frac{\partial^{2}u(x)}{\partial x_{i}^{2}} - \sum_{j=p+1}^{p+q} \frac{\partial^{2}\varphi(x)}{\partial x_{j}^{2}}, \varphi(x) >$$

$$= <\Box u(x), \varphi(x) >.$$

It follows that $(\Box \delta)^* u(x) = \Box u(x)$. Similarly for any *k*, we can show that $(\Box^k \delta)^* u(x) = \Box^k u(x)$.

- (b) Since $R_{\alpha}(x)$ and $R_{\beta}(x)$ are tempered distributions by Lemma 2.1. Now choose supp $R_{\alpha}(x) = K \subset \overline{\Gamma}_{+}$ where *K* is a compact set and $\overline{\Gamma}_{+}$ appear in Definition 2.1. Hence, by Donoghue (1969), $R_{\alpha}(x) * R_{\beta}(x)$ exists and is tempered distribution.
- (c) Since $R_{\alpha}(x)$ and $R_{\beta}(x)$ are tempered distributions with compact supports, thus $R_{\alpha}(x)$ and $R_{\beta}(x)$ are the elements of space of convolution algebra U ' of distribution. Now $R_{\alpha}(x)^*$ $R_{\beta}(x) = \delta$ then by Zemanain (1965) show that $R_{\alpha}(x) = R_{\beta}^{*-1}(x)$ is a unique inverse.

For example, if $\alpha = 2k$ where k is nonnegative integer and by Kananthai (1997), we have $R_{2k}(x)$ is an inverse of $R_{2k}(x)$, that is

$$R_{2k}(x) * R_{-2k}(x) = R_{-2k+2k}(x) = R_0(x) = \delta$$

3. RESULTS

Theorem 3.1 Given the compound ultra-hyperbolic equation

$$\sum_{r=0}^{m} c_{r} \Box^{r} u(x) = f(x), \qquad (3.1)$$

where \Box^r is the ultra-hyperbolic operator iterated *r*-times (r = 0, 1, 2, ..., m) defined by (1.2), *f* is a tempered distribution, $x = (x_1, x_2, ..., x_n) \in \Box^n$ the Euclidean *n*-dimensional spaces and *n* is odd and c_r is a constant. Then (3.1) has a unique weak solution

$$u(x) = f(x) * R_{2m}(x) * (c_m R_0(x) + W(x) R_2(x))^{*-1}$$
(3.2)

where

$$W(x) = c_{m-1} + c_{m-2} \cdot \frac{V}{2(4-n)} + c_{m-3} \cdot \frac{V^2}{2.4(4-n)(6-n)} + \dots$$

+ $c_0 \cdot \frac{V^{m-1}}{2.4.6...2(m-1)(4-n)(6-n)...(2m-n)}$ (3.3)

and V defined by (2.3) and $(c_m R_0(x) + W(x) R_2(x))^{*-1}$ is an inverse of $c_m R_0(x) + W(x) R_2(x)$.

Proof. By Lemma 2.4(a), equation (3.1) can be written as

$$(c_m \square^m \delta + c_{m-1} \square^{m-1} \delta + \dots + c_1 \square \delta + c_0 \delta) * u(x) = f(x)$$

Convolving both sides by $R_{2m}(x)$ defined by (2.1), we obtain

$$(c_m \Box^m R_{2m}(x) + c_{m-1} \Box^{m-1} R_{2m}(x) + \dots + c_1 \Box R_{2m}(x) + c_0 R_{2m}(x))^* u(x) = f(x)^* R_{2m}(x)$$

By Lemma 2.2, Lemma 2.3(c), we obtain

$$(c_{m}\delta + c_{m-1}R_{2}(x) + c_{m-2}R_{4}(x) + \dots + c_{1}\Box R_{2(m-1)}(x) + c_{0}R_{2m}(x))^{*}u(x) = f(x)^{*}R_{2m}(x)$$
(3.4)

By Lemma 2.3(a), we obtain

$$R_4(x) = \frac{V^{\frac{4-n}{2}}}{K_n(4)} = \frac{V^{\frac{2-n}{2}}V}{2(2+2-n)K_n(2)} = R_2(x).\frac{V}{2(4-n)}$$

Similarly,

$$R_{6}(x) = R_{2}(x) \cdot \frac{V^{2}}{2.4(4 - n)(6 - n)}$$

$$R_{8}(x) = R_{2}(x) \cdot \frac{V^{3}}{2.4.6(4 - n)(6 - n)(8 - n)}$$

$$\vdots$$

$$R_{2m}(x) = R_{2}(x) \cdot \frac{V^{m-1}}{2.4...2(m - 1)(4 - n)(6 - n)...(2m - n)}$$

Thus we obtain the function W(x) of (3.3). Now W(x) is continuous and infinitely differentiable in classical sense for n is odd. Since $R_2(x)$ is a tempered distribution with compact support, hence $W(x)R_2(x)$ also is tempered distribution with compact support and so $c_m R_0(x) + W(x)R_2(x)$. By Lemma 2.4(c), $c_m R_0(x) + W(x)R_2(x)$ has a unique inverse denoted by $(c_m R_0(x) + W(x)R_2(x))^{*-1}$.

Now (3.4) can be written as

$$(c_m R_0(x) + W(x)R_2(x))^* u(x) = f(x)^* R_{2m}(x), R_0(x) = \delta$$

Convolving both sides by $(c_m R_0(x) + W(x)R_2(x))^{*-1}$, we obtain

$$u(x) = f(x) * R_{2w}(x) * (c_w R_0(x) + W(x) R_2(x))^{*-1}$$

Since $R_{2m}(x)$ is a unique by Lemma 2.2 and $(c_m R_0(x) + W(x)R_2(x))^{*-1}$ also a unique by Lemma 2.4(c), it follows that u(x) is a unique weak solution of (3.1) with odd dimensional *n*. This completes the proof.

ACKNOWLEDGEMENTS

The authors would like to thank The Thailand Research Fund for financial support.

REFERENCES

Donoghue, W.F. 1969. Distributions and Fourier transform. Academic Press, New York.

- Kananthai, A. 1997. On the distribution related to the ultra-hyperbolic equations. Computational and Applied Mathematics, Elsevier Science Inc. 84:101-106.
- Nozaki, Y. 1964. On Riemann-Liouville Integral of Ultra-hyperbolic Type. Kodai Mathematical Seminar Reports. 6(2):69-87.
- Tellez, M.A. 1994. The distribution Hankel transform of Marcel Riesz's ultra-hyperbolic kernel. Studies in Applied Mathematics. Massachusetts Institute of Technology. Elsevier Science Inc. 93:133-162.

Trione, S.E. 1987. On Marcel Riesz's ultra-hyperbolic kernel. Trabajos de Matematica, 116. Zemanian, A.H. 1965. Distribution and transform analysis. McGraw-Hill, New York.