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ABSTRACT
Monte Carlo simulation was performed to observe the effect of nano-vacancy defects

on the magnetic behavior of Ising spins in a reduced geometry, i.e., a porous ultra-thin-
film. The magnetic properties were investigated as a function of the vacancy concentration
and as a function of temperature, especially in the magnetic phase transition region. The
fourth-order cumulant and finite-size-scaling via a double logarithmic plot were used to
extract critical temperatures and effective critical exponents for each vacancy concentra-
tion. From the results, with increasing magnitude of the porosity, it was found that the
Ising phase-transition-point shifted from its two-dimensional value, that the critical
temperature kBTC/J ≈ 2.269 to a lower temperature and towards zero temperature.
Furthermore, in the phase transition region, the power law relation between the magnetic
properties and the linear dimension of the system was found. Consequently, this supports
the validity of the finite-size-scaling theory even in the porous structure. Additionally, the
finite-size-scaling extraction of the effective critical exponents indicated that for small
numbers of vacant defects, the considered nano-vacancy defects structure fell into the
two-dimensional universality.
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INTRODUCTION
The magnetic system in a reduced geometry, i.e., thin-film or ultra-thin-film, has been

known to be of technological and application importance, especially in the magnetic record-
ing industries according to their exceptionally-high magnetic anisotropy (Murayama et al.,
2000; Plumer et al., 2001; Johnson et al., 1996). However, it is also known that under the
normal condition, vacancy defects in material frequently occur during the material process-
ing. The vacancy defect, i.e., the porosity at nanometer size is often found to randomly
distribute in the material structure. As a result, the magnetic properties of the material are
altered from its ideal condition and any calculation based on this ideal condition will lead to
an incorrect application design. On the other hand, inclusion with porosity, the porous
magnetic media becomes a novel artificial structure with interesting properties such as
enhanced coercivity. Furthermore, the porous magnetic structure is also a key factor to
control the magnetic critical properties. Because of the smaller number of neighboring atomic
sites, there is a reduction in the average ferromagnetic exchange coupling. As a result, this
nano-defect can be used to control the magnetic phase transition and hence the Curie
temperature. As can be seen, all of these draw a significant interest in using porous magnetic
as a new medium for exploring novel magnetic phenomena and may lead to innovative
industrial applications.
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Consequently, there comes an interest to model how the nano-vacancy defect affects
the properties of the magnetic materials. It is interesting to investigate how the defect alters
the magnetic behavior, especially at the magnetic phase transition point. In this study, the
magnetic system in a reduced structure, i.e., thin-film was considered in order to investigate
the magnetic profiles and its phase transition under the influence of nano-vacancy defects by
means of Monte Carlo simulations. As a prototype, the study was based on the ultra-thin
structure, i.e., the planar square lattice, under an inclusion of nano-sized porosity, e.g., number
of atoms missing. In the simulation, the Ising model was chosen to represent magnetic spins
since strong magnetic anisotropies are common in ultra-thin ferromagnetic films, and there is
evidence which suggests that Ising model is useful to model magnetic ultra-thin-film from
both theoretical (Binder and Hohenberg, 1974; Bander and Mills, 1988) and experimental
studies (Li and Baberschke, 1992; Elmers et al., 1994; Dunlavy and Venus, 2004). In a simu-
lation update, a sophisticated Wolff algorithm (Wolff, 1989) was used to update the magnetic
configurations. By varying the vacancy-defect concentrations and temperatures, the
observables, i.e., the magnetization and the magnetic susceptibility were carefully taken at
the interval of twice the correlation time to minimize the statistical errors (Müller-Krumbhaar
and Binder, 1973). A careful attention was paid to the magnetic phase transition to extract the
critical temperature. In addition, to go for another step beyond previous Monte Carlo studies
in literatures, the finite size effect was carefully taken into account and critical exponents
were extracted to investigate the universality.

In outline, the numerical calculations and the methods used were firstly described.
Secondly, the evolution of the magnetic properties as a function of void (vacancy) concentra-
tion and temperatures was shown. Then, the critical properties in terms of the critical tem-
peratures and the effective critical exponents were reported. After that, observations on how
the exponents depend on the vacancy concentrations were made. Finally, the results were
discussed and the characteristic effective critical exponents were compared with those found
in literatures (where applicable).

MATERIALS AND METHODS
In this study, the Ising Hamiltonian was considered:

(1)

where the spin Si took on the values ±1 and the sum included only first nearest-neighbor
(1nn) pairs. Helical (periodic) boundary conditions were used in this geometry. The units of
J/kB and J were for temperature and energies respectively. The simulations were carried out
for square lattice with number of atomic sites N = L x L where L varied from 20 to 40 with a
step of 4. The vacancy concentration c, indicating the magnitude of porosity, was varied from
1 to 20 percent of N. These non-magnetic sites, being equivalent to the vacancy-type defect,
do not occupy the magnetic moment, i.e., Si = 0, giving no contribution to the above Hamil-
tonian. Consequently, the total number of Ising spins is N' = N(1-c).

In updating the spin configuration, the Wolff algorithm (Wolff, 1989) was used to mini-
mize the effect from statistical errors arising from correlation time τ (Müller-Krumbhaar and
Binder, 1973). From an initial state, each simulation was waited until it resided in equilibra-
tion before measuring any observable, i.e., the magnetization per spin

(2)

H = –J  SiSj,
<ij>

m =      Si,
N'

i=1

1
N'
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and the internal energy

(3)

Each measurement was taken when the number of flipped spins in the Wolff update
exceeded or equalled to N' x τ. Then, the expectation of magnetization per spin

(4)

where n' referred to number of measurement used in the time average, and the magnetic
susceptibility

(5)

where β ≡  J/kBT , were calculated. For the investigation of the critical behavior, the effective
critical temperatures TC(c) for each vacancy concentration c were located via the fourth-
order cumulant UL (Binder, 1981), i.e.,

(6)

At T = TC(c), UL’s becomes L-independent, so differing sizes L and  L' give

  Owing to finite size effects,  TC
b(L=bL') against 1n-1b needs to be plotted and

extrapolated the results to the infinite limit, i.e., 1n-1 b → 0 (Binder, 1981). To maximize the
efficiency of this TC(c) extraction, a single long simulation was performed at a temperature
T0 and the histogram method (Ferrenberg and Swendsen, 1988; Ferrenberg and Landau, 1991)
was used to extrapolate UL to temperatures nearby in order to find the cumulant crossing
point. This temperature T0 was chosen from the temperature at the peak of the magnetic
susceptibility curve for the L = 40 system. Then, around 1 to 4 million spin configurations
were used to create the histograms. To exclude the data being obtained from temperatures too
far from the simulated temperature T0, the range of extrapolation |T - T0| was restricted by the
criterion |U(T)-U(T0)|  σE  (Newman and Barkema, 1999) where U ≡ <E> is the average of
the energy E, and σE is a standard deviation of E at T0.

To extract the critical exponents to the magnetic critical behavior from finite size re-
sults, an empirical finite-size-scaling form for this porous media was considered. The pur-
pose is to find the magnetic properties m and χ scale with L at a particular concentration c of
the systems. The basic finite-size-scaling ansatz (Fisher, 1974; Stanley, 1987) rests on an
assumption that the magnetic properties in the critical region scales with the reduced

temperature                                  in a power-law form. Hence the empirical forms for how the

magnetization and susceptibility scale with L, at a fixed c, can be written as

(7)

and (8)

where γ', β' and ν' are the effective critical exponents associated with χ, m and the correlation
length ξ respectively. Based on this finite-size-scaling theory, it is generally known that

E = –J  SiSj,
<ij>

χ = βN ([m2]–[m]2),

1
N'

[m] =      mt ,
N'

t=1

[m4]
[m2]2

1
3

UL = 1–               .

UL'

UL T = TC(c)
=1.

t =            –1T
TC(c)

[m(T,c)] = L–(β'/ν') m (L1/ν't,c),

χ(T,c) = L(γ'/ν') χ (L1/ν't,c),

 ~

 ~
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ξ ~ L1/ν'. For c = 0, the effective exponents are the critical exponents for the two-dimensional
(2D) system. The functions χ and m are scaling functions for a given c and the reduced
temperature t. These scaling functions for a range of L should collapse onto a single curve
with the correct critical temperature and suitable effective critical exponents. Next, the effec-
tive exponent 1/ν' can be extracted from the derivative of the cumulant with respect to L at TC

owing to its variation with system size as L1/ν' i.e. dUL/dβ ~ L1/ν'  (Binder, 1981) where this
β (=kBT) is the inverse temperature. Note that if Eq. (7,8) correctly encapsulate the nature of
magnetic critical behavior in porous structures, one can extract the effective exponents (β'/ν')
and (γ'/ν') by making a log-log plot of m or χ against L at TC. Hence, the validity of the
empirical equations Eq. (7,8) in modeling results from our simulations, in the critical region,
can be done by investigating if linearity from the double logarithmic plots of χ or m against
L are found. In addition, based on the hyperscaling relation (Fisher, 1969), the test of univer-
sality can be performed by considering the effective dimension (Freire et al., 1994; Rouault
et al., 1995) via

(9)

For c ➝  0, a 2D-like behavior, i.e., deff = 2 is expected.

RESULTS AND DISCUSSION
From magnetization m and susceptibility χ profiles for various vacancy concentration

c and system sizes L, a suggesting crossover of behavior from a 2D-like for the c = 0.00  to a
1D-like (where there is no phase transition) for c = 0.20 or smaller was found (see Figure. 1).
The transition point moves from 2D to 1D values with increasing the vacancy concentration
in a good agreement with previous prediction in diluted magnet under the framework of
percolation studies (Stauffer and Aharony, 1994).

~ ~

β'
ν'(    )deff =          + 2          .

γ'
ν'(    )

Figure 1. Magnetic properties of the porous 40(40 Ising spins, i.e. (a) the magnetization per
spin m and (b) the magnetic susceptibility χ as a function of temperature, which
present a reduction of the phase transition point with varying the concentration
from c = 0.00 to c = 0.20. Lines are used to guide the eyes.
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Figure 2. The fourth-order cumulant of the magnetization per spin UL's for various linear
dimension L as a function of temperature kBT/J of the c = 0.02 system. Lines are
used for a viewing aid. From the figure, the temperature at the middle of the cross-
ing region suggests where the critical temperature TC is.

Then, the critical temperatures TC of the system at a particular c was calculated from
the Monte Carlo simulations, using the cumulant crossing method, e.g., see Figure 2. From
all the TC’s results, similarly, a change from 2D to 1D behavior was found as c was increased.
This is because the number of vacancy sites has a strong effect on the averaged exchange
coupling among the spins in the systems. Then, the more vacancies, the less magnitude of the
average magnetic exchange coupling in the systems, and this strongly reduces the magnitude
of the magnetization. Consequently, the transition from the ferromagnetic to the paramag-
netic phase does not require as much thermal energy as it does in the ideal 2D system, and
this results in smaller critical temperature TC. The results of the critical temperature are
presented in Figure 3 as a function of the effective thickness (1-c).

Figure 3. The critical temperatures kBTC/J as a function of effective thickness (1-c) extracted
from Monte Carlo simulations. Lines are added as a viewing aid. Best linear fit
suggests an equation y = 3.76x – 1.48 and at y = 0 it is found that x = 0.39 ± 0.01.
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As can be seen in Figure 3, a linear relation between effective thickness and critical
temperature is found, providing a way to predict the critical temperature at any particular
vacancy concentration. With the least-square linear fit, the critical temperature was found to
cease down to zero at c = 0.39(0.01. This agrees well with the investigation of percolation in
diluted magnet in 2D system (Stauffer and Aharony, 1994).

Figure 4. An example of the extraction of effective critical exponents β', γ'/ν', and 1/ν' from
the slopes of least-square fits (see text) for c = 0.02 system. The apparent linear
relations support Eq. (7,8).

On the other hand, in searching for the critical exponent to the magnetic behaviour, the
effective critical exponents were extracted from Eq. (7,8) as well as the relation dUL/dβ ~
L1/ν' at TC. As shown in Figure 4, results from the simulations, at TC, indeed show very good
linear relationships between log m (log χ, log dUL/dβ) and log L for all considered vacancy
concentrations. The effective exponents β'/ν', γ'/ν', and 1/ν' were then extracted from the
slopes of these linear least-squares fits. Then, the calculation of the effective dimension deff =
γ'/ν' +2 β'/ν' [see Eq. (9)] was performed. It was found that, for small c’s, deff has a value of
2 within error bars (see Table 1) as expected. This confirms the 2D universality in ultra-thin-
film with small number of the vacancy defects and ensures the possibility of using Eq. (7,8)
to describe the critical behavior of the systems. However, for large number of the vacancy
concentration, i.e., c  0.06, the ef fective critical exponent does not give any suggestive
information. This is due to that the large number of vacancy sites randomly spread through-
out the lattice giving rise to many random microstructures. As it is well-known that the
microstructure has a strong effect on the magnetic properties, this may be such a case why the
effective exponent and the effective dimension are not close to 2. To clarify this, more
number of individual runs should be performed and the critical properties should be extracted
from the average of the magnetic properties taken from those runs.
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Table 1. Results of the critical temperatures, the critical exponents (extracted via finite-size-
scaling functions) and the effective dimension deff  for porous Ising spins with the
vacancy concentration c ranging from 0.00 to 0.20.

c kBTC/J β'/ν' ν'β'/ν' γ'/ν' deff

0 2.269 ± 0.001 0.124 ± 0.002 1.00 ± 0.01 1.75 ± 0.01 2.00 ± 0.01

0.01 2.233 ± 0.001 0.119 ± 0.005 1.00 ± 0.01 1.72 ± 0.02 1.96 ± 0.03

0.02 2.192 ± 0.001 0.123 ± 0.003 1.00 ± 0.01 1.76 ± 0.01 2.01 ± 0.01

0.04 2.129 ± 0.002 0.124 ± 0.001 0.99 ± 0.01 1.74 ± 0.02 1.99 ± 0.02

0.06 2.062 ± 0.004 0.102 ± 0.006 0.97 ± 0.02 1.65 ± 0.01 1.85 ±0.02

0.08 1.974 ± 0.006 0.083 ± 0.009 0.97 ± 0.01 1.49 ± 0.01 1.66 ± 0.02

0.1 1.898 ± 0.004 0.133 ± 0.005 0.99 ± 0.04 1.82 ± 0.09 2.10 ± 0.10

0.15 1.710 ± 0.010 0.075 ± 0.009 0.88 ± 0.07 1.44 ± 0.08 1.59 ± 0.09

0.2 1.530 ± 0.010 0.220 ± 0.008 0.92 ± 0.08 1.95 ± 0.03 2.39 ± 0.04

CONCLUSION
Monte Carlo studies on the Ising ultra-thin-film system were performed to investigate

the effect of vacancy defect and its concentrations on the magnetic properties, i.e., the mag-
netization and the susceptibility per spins including its critical behavior in terms of the criti-
cal temperature and the effective critical exponent. The dimensional crossover of both m and
χ from 2D- to 1D-like with increasing the vacancy concentration has been found. That the
film TC’s evolve from 2D to 1D value with increasing the vacancy concentration is in good
agreement with previous studies. From the results, at small concentration, i.e., c  0.04, the
effective exponents and the effective dimensions are essentially the same as those in the ideal
2D structure, suggesting that the porosity does not affect the 2D universality. However, with
large number of the vacancy concentration c, more number of individual runs needs to be
taken to extract any informative results.

ACKNOWLEDGEMENTS
The author would like to express his gratitude to the Faculty of Science, Chiang Mai

University and the Thailand Research Fund (TRF) for financial supports.

REFERENCES
Bander, M., and D. L. Mills. 1988. Ferromagnetism of ultrathin films. Phys. Rev. B 38:

12015–12018.
Binder, K., and P. C. Hohenberg. 1974. Surface effects on magnetic phase transitions.  Phys.

Rev. B 9: 2194–2214.
Binder, K. 1981. Finite size scaling analysis of Ising model block distribution functions. Z.

Physik B 43: 119–140
Dunlavy, M. J., and D. Venus. 2004. Critical susceptibility exponent measured from Fe/W(110)

bilayers.Phys. Rev. B 69: 094411–1–094411–7.
Elmers, H. J.,  J. Hauschild, H. Höche, U. Gradmann, H. Bethge, D. Heuer, and U. Köhler.

1994. Submonolayer magnetism of Fe(110) on W(110): Finite width scaling of stripes
and percolation between islands. Phys. Rev. Lett. 73: 898–901.



CMU. Journal Special Issue on Nanotechnology (2005) Vol. 4(1)➔154

Ferrenberg, A. M., and R. H. Swendsen. 1988. New Monte Carlo technique for studying
phase transitions. Phys. Rev. Lett. 61: 2635–2638.

Ferrenberg, A. M., and D. P. Landau. 1991. Critical behavior of the three-dimensional Ising
model: A high-resolution Monte Carlo study. Phys. Rev. B 44: 5081–5091.

Fisher, M. E. 1969. Rigorous inequalities for critical-point correlation exponents. Phys. Rev.
180: 594–600.

Fisher, M. E. 1974. The renormalization group in the theory of critical behavior. Rev. Mod.
Phys. 46: 597–616.

Freire, F., D. O’Connor, and C.R. Stephens 1994. Dimensional crossover and finite-size scal-
ing below TC. J. Stat. Phys. 74: 219–238.

Johnson, M. T., P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries. 1996. Magnetic
anisotropy in metallic multilayers. Rep. Prog. Phys. 59: 1409–1458.

Li, Y., and K. Baberschke. 1992. Dimensional crossover in ultrathin Ni(111) films on W(110).
Phys. Rev. Lett. 68: 1208–1211.

Müller-Krumbhaar, H., and K. Binder. 1973. Dynamic properties of the Monte Carlo method
in statistical mechanics. J. Stat. Phys. 8: 1–24

Murayama, A., K. Hyomi, J. Eickmann, and C. M. Falco. 2000. Brillouin study of long-
wavelength spin waves in quasimonatomic Co films with uniaxial perpendicular mag-
netic anisotropy. Phys. Rev. B 61: 8984–8992.

Newman, M. E. J., and G. T. Barkema. 1999. Monte Carlo methods in statistical physics.
Clarendon Press, Oxford.

Plumer, M. L., J. van Ek, and D. Weller. 2001. The physics of ultra-high-density magnetic
recording. Springer, New York.

Rouault, Y., J. Baschnagel, and K. Binder. 1995. Phase separation of symmetrical polymer
mixtures in thin-film geometry. J. Stat. Phys. 80: 1009–1031.

Stanley, H. E. 1987. Introduction to phase transitions and critical phenomena. Oxford Univer-
sity Press, Oxford.

Stauffer, D., and A. Aharony. 1994. Introduction to the percolation theory. Taylor & Francis,
London.

Wolff, U. 1989. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62:
361–364.


