On the Weak Solution of the Compound Ultra-hyperbolic Equation

Amnuay Kananthai* and Kamsing Nonlaopon

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiangmai 50200, Thailand

*Corresponding author. E-mail: <u>malamnka@science.cmu.ac.th</u>

ABSTRACT

In this paper we have studied the compound ultra-hyperbolic equation of the form

$$\sum_{r=0}^m c_r \, \Box^r \, u(x) = f(x),$$

where \Box^r is the ultra-hyperbolic operator iterated r-times (r = 0, 1, 2, ..., m), f is a given generalized function, u is an unknown function, $x = (x_1, x_2, ..., x_n) \in \Box^n$ the Euclidean n-dimensional spaces and c_r is a constant.

It is found that the equation above has a weak solution u(x) which is of the form Marcel Riesz's kernel and moreover, such a solution is unique.

1. INTRODUCTION

Consider the equation

$$\Box^k u(x) = f(x), \tag{1.1}$$

where *u* and *f* are some generalized functions, and \Box^k is the ultra-hyperbolic operator iterated *k* -times and is defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}, \quad (1.2)$$

p + q = n is the dimension of the space \Box^n , $x = (x_1, x_2, ..., x_n) \in \Box^n$, and k is a nonnegative integer.

Trione (1987) has shown that (1.1) has $u(x) = R_{2k}(x)$ as a unique elementary solution where $R_{2k}(x)$ is defined by (2.1) with $\alpha = 2k$. Moreover, Tellez (1994) has proved that $R_{2k}(x)$ exists only for case *p* is odd with p + q = n.

In this paper we develop the equation (1.1) to the form

$$\sum_{r=0}^{m} c_{r} \Box^{r} u(x) = f(x), \qquad (1.3)$$

which is called *the compound ultra-hyperbolic equation* and by convention $\Box^0 u(x) = u(x)$. We use the method of convolution of tempered distribution to find the solution of equation (1.3).