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ABSTRACT

 This study investigated the effect of different sub-division schemes and two rainfall 
data types – gauge and radar – on the accuracy of runoff forecasting using a semi-distributed 
hydrological URBS model in a large river basin with a limited network of rainfall gauges. 
The entire catchments at three runoff stations in the Upper Ping River Basin, Thailand, 
were employed initially as a single lumped unit, and each catchment was thereafter divided 
into four increasingly complex subdivision schemes. Model performance was compared 
using areal gauge rainfall data (from the sparse rain gauge network) and estimated, high-
resolution, radar rainfall data across all catchment schemes over three periods; June-
October 2003, May-September 2004, and May-July 2005. The results indicated that the 
accuracy of runoff estimates increased with increasing catchment subdivision complexity 
when using the high-resolution radar rainfall, but did not improve with the rain gauge data.

Keywords: Catchment subdivision, Radar rainfall, Rain gauge rainfall, Semi-distributed 
model

INTRODUCTION

	 Hydrological	 modelling	 is	 a	 non-structural	 tool	 for	 predicting	 water	 runoff	 in	 a	
catchment basin. The models are of three types: lumped, semi-distributed, and distributed 
(Cunderlik, 2003; Jajarmizadeh et al., 2012). The lumped model is the simplest; it assumes that 
precipitation and model parameters are uniform over the basin. The larger the basin and more 
variable its characteristics, the less accurate this model becomes (Koren et al., 1999). The semi-
distributed	model	allows	for	partial	spatial	variations	in	precipitation,	streamflow	routing,	and	
catchment by sub-dividing the catchment area; this improves predictive performance (Boyle 
et al. 2001). The distributed model allows the modeler to specify the spatial resolution over 
which	to	fully	vary	the	model	parameters;	this	provides	the	most	accurate	runoff	estimates,	
but	 is	 highly	 complex,	 requiring	 significant	 data	 parameterization	 (Arnold	 et	 al.,	 1998).	
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Researchers develop models with higher degrees of structural complexity in the expectation 
of improving prediction accuracy (Perrin et al., 2001; Mayr et al., 2013). However, more 
complicated	models	normally	require	more	input	data,	and	are	difficult	to	apply,	especially	for	
catchments	with	insufficient	or	no	hydrologic	data.	In	addition,	the	more	complex	the	model,	
the	more	difficult	it	is	to	assess	its	parameters,	leading	to	large	parameter	uncertainty	(Butts	
et	al.,	2004).	As	such,	 the	semi-distributed	model	offers	a	reasonable	compromise	between	
simplicity	 and	 complexity	 for	 estimating	 water	 runoff	 in	 areas	 with	 limited	 measuring	
networks. 
	 Factors	associated	with	rainfall	and	catchment	characteristics	significantly	affect	 the	
accuracy	of	runoff	estimation	(Wilson,	1979;	Hamlin,	1983).	Semi-distributed	models	with	
complex catchment subdivision schemes can help account for the spatial variation of rainfall 
and	catchment	characteristics,	such	as	topography,	land	use,	or	soil	properties	(Ajami	et	al.,	
2004). However, several studies found that high-resolution sub-catchments do not necessarily 
improve model performance for a variety of reasons, including the theories and concepts of 
the selected models being compared, the sensitivity and uncertainty of model parameters, 
catchment and climate characteristics, and data quality (Han et al., 2013; Zhang et al., 2013). 
	 This	 study	 focuses	 on	 the	 effect	 of	 rainfall	 data	 quality	 on	 the	 accuracy	 of	 runoff	
modelling in a country, Thailand, with a limited capacity/network to measure continuous 
ground	rainfall	–	a	major	constraint	 to	effective	modeling.	Rain	gauge	measurements	from	
this	sparse	network	cannot	spatially	represent	rainfall	distribution	over	the	basin.	As	such,	this	
study investigated whether adding more structural complexity (by subdividing the catchment 
into	finer	scale)	to	only	coarse	resolution	of	rainfall	gauge	data	could	lead	to	a	better	model	
and	 simulation	 results.	We	 also	 investigated	whether	 combining	 higher	 resolution	 rainfall	
data	from	radar,	as	opposed	to	ground	gauges,	with	finer	resolution	of	sub-catchments	would	
improve	 model	 results.	 Our	 research	 then	 demonstrated	 the	 relative	 benefits	 offered	 by	
applying	gauge	and	radar	rainfall	data	to	different	catchment	subdivision	scales	to	simulate	
the	runoff	hydrograph	in	the	Upper	Ping	River	Basin,	Thailand.

MATERIALS AND METHODS

Semi-distributed model
	 This	study	used	the	Unified	River	Basin	Simulator	(URBS),	a	semi-distributed,	non-
linear,	 rainfall-runoff-routing	model	 that	can	account	for	 the	spatial	and	temporal	variation	
of	rainfall.	Carroll	(2007)	developed	the	URBS	model	based	on	research	by	Laurenson	and	
Mein	 (1990).	 Both	 the	Australian	 Bureau	 of	Meteorology	 and	 the	 Chiangjiang	 (Yangtze)	
Water	 Resources	 Commission	 in	 China	 have	 used	 the	 model	 to	 forecast	 floods	 (Malone,	
2003;	Jordan	et	al.,	2004;	Pengel	et	al.,	2007).	Mapiam	and	Sriwongsitanon	(2009)	used	the	
URBS	model	for	flood	estimation	on	the	gauged	catchments	in	the	Upper	Ping	River	Basin;	
they later formulated a relationship for using the model on the ungauged catchments of the 
basin.	Subsequently,	Mapiam	et	al.	(2014)	applied	the	URBS	model	with	three	types	of	radar	
and	rain	gauge	rainfall	inputs	with	different	temporal	and	spatial	resolution	to	investigate	the	
best	model	for	flow	simulation	in	the	Upper	Ping	River	Basin.	They	found	that	radar	rainfall	
data	was	more	accurate	than	rain	gauge	data	for	estimating	hourly	runoff	of	the	overall	flow	
hydrographs.
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	 Using	 the	URBS	mode,	 this	 study	first	divided	 the	catchment	 (study	area	described	
below) into sub-catchments. The excess rainfall estimation for each sub-catchment was 
later	calculated	using	an	initial	loss	–	proportional	runoff	model	(IL-PR)	for	pervious	areas	
and	a	spatial	 infiltration	model	for	impervious	areas.	The	accumulated	rainfall	depth	at	 the	
beginning period of simulation (Ri) was deducted by an initial loss (mm) until the Ri exceeded 
the maximum initial loss (IL,	mm).	The	proportional	loss	using	proportional	runoff	coefficient	
(pr, dimensionless) was incorporated. The pervious excess rainfall depth at time t (Rt 

per) was 
given by:

(1)

(2)

where Rt 
tot  is the rainfall depth during a time interval (Δt) – 1 hour in this study. The accumulated 

initial loss at time t (ili) was described as below:

(3)

The	effective	fraction	of	the	area	that	is	impervious	(					)	was	given	by	Equation	4:

(4)

where     is existing fraction of the impervious area (this study assumed     = 0),    is the 
cumulative	 infiltration	 into	 the	 pervious	 area	 starting	 from	 the	 beginning	 of	 a	 simulation	
period,										is	the	maximum	infiltration	capacity	of	the	sub-catchment	(IF	parameter).	Excess	
rainfall (Rt) at time t	on	the	corresponding	sub-catchment	was	calculated	using	Equation	5:

(5)

where								is	the	impervious	runoff	coefficient	(the	default	is	1)	and							is	calculated	using	 
the	IL-PR	model.	
	 After	determining	excess	rainfall	for	each	sub-catchment,	we	conventionally	applied	
the	catchment	routing	and	channel	models	to	estimate	runoff	at	the	outlet	using	Equations	6	
and	7,	respectively:

(6)

(7)
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where	for	Equation	6,										is	the	catchment	storage	(m3s-1 h) of each sub-catchment, β is the 
catchment lag parameter (h/km) for each sub-catchment, A is an area of sub-catchment (km2), 
m is the dimensionless catchment non-linearity parameter, and Q	is	the	outflow	of	catchment	
storage (m3/s)	of	the	corresponding	sub-catchment.	For	Equation	7,								is	the	channel	storage	 
(m3s-1 h) for each sub-catchment, α is the channel lag parameter (h/km) for each sub-catchment, 
L is the length of a reach (km) considered in channel routing, Qu	is	the	inflow	at	the	upstream	
end	of	a	reach	(including	sub-catchment	 inflow,	Q,	calculated	using	Equation	6),	Qd is the 
outflow	at	the	downstream	end	of	a	channel	reach	(m3s-1) of the corresponding sub-catchment, 
and x is the Muskingum translation parameter.
	 From	Equations	1	to	7,	seven	parameters	are	required	to	run	the	model:	channel	lag	
(α), catchment nonlinearity (m), Muskingum translation (x), catchment lag (β), initial loss 
(IL),	 proportional	 amount	 of	 runoff	 (PR),	 and	maximum	 infiltration	 rate	 (IF).	 Parameters	
α , m, x, and β	 are	 related	 to	 runoff	routing	and	 IL,	PR,	and	 IF	are	 related	 to	 rainfall	 loss	
modelling. Since the values of m and x	do	not	normally	vary	significantly	from	0.8	and	0.3,	
respectively	(Carroll,	2007;	Jordan	et	al.,	2004),	we	used	these	values	in	our	model.	The	other	
five	parameters	(α, β,	IL,	PR,	and	IF)	were	determined	during	calibration	and	verification.	

Study areas and data collection
	 The	study	area	was	three	point	locations	–	runoff	stations	P.21,	P.24A,	and	P.71	–	in	the	
Upper	Ping	River	Basin,	Thailand.	The	basin	landform	is	undulating	terrain.	The	catchment	
areas	of	these	three	stations	are	approximately	515,	460,	and	1,771	km2, respectively (Figure 
1).	Rainfall	data	was	collected	from	35	daily	rain	gauges	in	the	study	area,	owned	and	operated	
by	the	Royal	Irrigation	Department	and	the	Thai	Meteorological	Department.	The	study	used	
radar	reflectivity	data	from	the	Omkoi	Radar,	owned	and	operated	by	the	Department	of	Royal	
Rainmaking	and	Agricultural	Aviation.	The	continuous	runoff	data	was	collected	from	that	
recorded	at	 stations	P.21,	P.24A,	and	P.71.	Locations	of	 rain	gauge	 runoff	stations	and	 the	
radar radius are shown in Figure 1.
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Figure 1.	 The	 locations	 of	 the	 gauge	 catchment	 areas	 (P.21,	 P.24A,	 and	P.71),	 radar,	 rain	 
	 gauges,	and	runoff	stations.

Catchment subdivision schemes
	 To	investigate	 the	effect	of	 the	degree	of	structural	complexity	on	runoff	modelling,	
the	gauge	catchments	over	the	three	runoff	stations	(P.21,	P.24A,	and	P.71)	were	each	divided	
into	sub-catchments	to	enhance	model	complexity.	A	series	of	catchment	subdivision	levels	
were	configured	by	considering	topography	and	catchment	characteristics.	Five	subdivision	
schemes were then constructed by delineating each sub-catchment into an equivalent size as 
the percentage of the whole area of each gauge catchment as follows: 100% (scheme-100%), 
50%	(scheme-50%),	25%	(scheme-25%),	12%	(scheme-12%),	and	7%	(scheme-7%)	of	the	
whole	area.	Locations	of	the	centroid	of	each	sub-catchment	at	each	scenario	were	specified	
and the distance from the centroid to the outlet of the corresponding sub-catchment, or centroid 
length, was then calculated for constructing river network schematization. Total rainfall depth 
and calibrated model parameters were assumed to be uniform over each sub-catchment. 
Two alternative rainfall measures – gauge and radar rainfall data – were assessed at the sub-
catchment	 level	(described	in	 the	next	section)	and	used	in	 the	URBS	model	 to	convert	 to	
excess	rainfall	using	Equations	1-5.	The	estimated	excess	rainfall	over	a	sub-catchment	was	
routed through the catchment storage, located at the centroid of that sub-catchment, to the 
channel	using	the	catchment	routing	technique,	as	shown	in	Equation	6;	afterward,	the	outflow	
from	 the	catchment	 storage,	which	 is	 the	 inflow	of	channel	 storage	 (Qu) was routed along 
a reach (the centroid length) to the next downstream sub-catchment, using the Muskingum 
method	(Equation	7).	The	number	of	sub-catchments	(NSC),	the	sub-catchment	area	(SCA),	
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and	the	centroid	length	(CL)	are	 the	three	sub-catchment	variables	needed	to	construct	 the	
catchment	 network	 at	 each	 catchment	 subdivision	 scheme	 in	 the	 URBS	model.	 The	 sub-
catchment	 variables	 corresponding	 to	 each	 catchment	 subdivision	 scheme	 at	 each	 runoff	
station are presented in Table 1 and Figure 2.

Table 1.		Sub-catchment	variables	of	the	URBS	model	for	each	catchment	subdivision	scheme.
Details (Scheme-100%) (Scheme-50%) (Scheme-25%) (Scheme-12%) (Scheme-7%)

P.21 P.24A P.71 P.21 P.24A P.71 P.21 P.24A P.71 P.21 P.24A P.71 P.21 P.24A P.71
NSC 1 1 1 2 2 2 4 4 4 8 7 8 10 9 15

Mean	SCA	(km2) 515 460 1,771 258 230 886 129 115 443 64 66 221 52 51 118

Range	of	SCA	(km2) 515 460 1,771 175-

340

190-

270

835-

937

102-

167

82-148 360-

500

50-98 30-100 125-

328

25-77 23-100 63-147

Range	of	CL	(km) 29 22 62 12-18 7-17 10-43 4-17 0.6-14 9-38 1.5-10 0.6-7 3-24 0.5-8 0.6-7 1.5-19

Figure 2.	 Catchment	subdivision	schemes	for	P.21,	P.24A,	and	P.71	catchments.

Assessment of rainfall inputs
	 This	 study	 used	 two	 different	measures	 of	 rainfall	 input	 distributed	 over	 each	 sub-
catchment	area	–	gauge	 rainfall	and	 radar	 rainfall.	Data	 from	 these	parameters	 from	June-
October	2003	were	used	to	calibrate	the	model.	Data	from	May-September	2004	and	May-
July	2005	were	used	to	verify	the	model.
 Gauge rainfall.	Daily	gauge	rainfall	data	located	within	160	km	from	the	Omkoi	radar	
was collected for analysis. The data were controlled for quality by considering rainfall data 
from	adjacent	gauges	and	ensuring	consistency	in	the	ensuing	double	mass	curves.	If	unusual	
rainfall data were found, these were excluded from the analysis. Rain gauge data of acceptable 
quality	was	then	spatially	averaged	using	the	Inverse	Distance	Weighting	(IDW)	technique	for	
each	sub-catchment.	IDW	is	a	simple	interpolation	approach	that	has	been	widely	used	in	many	
applications	(Dirks	et	al.,	1998;	Chinchorkar	et	al.	2012).	Under	conditions	of	insufficient	data	
density,	IDW	performs	better	than	other	statistical	interpolation	methods	like	multiple	linear	
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regression,	optimal	interpolation,	or	Kriging	(Eischeid	et	al.,	2000).	Catchment	studies	with	a	
limited	rain	gauge	network	select	IDW	to	assess	areal	rainfall.
 Radar rainfall.	 Weather	 radar	 has	 been	 used	 as	 an	 alternative	 tool	 for	 providing	
high-resolution	spatial	and	 temporal	 rainfall	estimates,	especially	 in	areas	with	 insufficient	
rainfall	stations,	 like	Thailand,	 in	order	 to	enhance	flood	prediction	accuracy.	Mapiam	and	
Sriwongsitanon	 (2008)	 first	 developed	 a	 climatological	 Z-R	 relationship	 (Z=74R1.6) based 
on	 daily	 data	 for	 converting	 instantaneous	 reflectivity	 data	 into	 rainfall	 rate	 in	 the	Upper	
Ping River Basin. However, Mapiam et al. (2009) found that using the daily (24-hour) Z-R 
relationship	 to	estimate	hourly	radar	rainfall	can	 lead	 to	significant	errors	when	estimating	
extreme rainfall. To reduce this error, the scale-transformed hourly Z-R relationship (Z=88R1.6) 
proposed by Mapiam et al. (2009) has been recommended for estimating hourly radar rainfall; 
it	 improves	overall	runoff	estimates	(Mapiam	et	al.,	2014).	Before	applying	the	reflectivity	
data	with	the	Z-R	relationship,	radar	reflectivity	measurement	errors	need	to	be	eliminated.	
Since	the	Omkoi	radar	used	in	this	study	is	an	S-band	Doppler	radar,	beam	attenuation	error	
was	assumed	to	be	insignificant	(Hitschfeld	and	Bordan,	1954;	Delrieu	et	al.,	2000).	To	avoid	
the	bright	band	effect,	we	only	used	radar	reflectivity	data	within	160	km	of	the	radar.	
	 The	effect	of	ground	clutter	and	beam	blocking	was	eliminated	by	using	a	topography	
map of known ground clutter locations and discarding radar measurement in these areas. 
The	effect	of	noise	and	hail	 in	 the	measured	 radar	 reflectivity	was	addressed	by	assuming	
reflectivity	values	less	than	15	dBZ	to	represent	a	reflectivity	of	0	mm6 m-3, and those greater 
than	53	dBZ	to	equal	53	dBZ,	respectively.	After	eliminating	these	errors,	the	radar	reflectivity	
data was converted into radar rainfall by applying the relationship Z=88R1.6 at all pixels located 
in the three gauged catchments. The radar rainfall for each sub-catchment with a 1 km2 spatial 
resolution was estimated by averaging radar rainfall of all pixels located within a considered 
sub-catchment using a simple arithmetic averaging method.

Parameterization of the URBS model
	 Model	calibration	and	verification	followed	conventional	procedures	to	ascertain	the	
five	 control	 parameters	 (α, β,	 IL,	 PR,	 and	 IF)	 of	 the	URBS	model	 corresponding	 to	 each	
rainfall data set (guage and radar) and catchment sub-division scheme. The calculated rainfall 
during June-October 2003 was used to calibrate the model; data from May-September 2004 
and	May-July	2005	was	used	to	verify	the	model.	Unfortunately,	the	URBS	model	cannot	be	
calibrated automatically. To reach the optimal set of model parameters for each scenario, we 
thus applied a simple optimization technique called a grid-base parameter search developed 
by	Mapiam	et	al.	(2014).	Overall	root	mean	square	error	(RMSE)	between	the	calculated	and	
measured discharges for each simulation case was used as the objective function, as shown in 
the following equation:

	 	 	 Root	mean	square	error	(RMSE)	=		 (8)
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 To evaluate the performance of each rainfall type and catchment structural complexity 
based on the calibrated parameter application, the hourly calculated and observed hydrographs 
at	each	gauge	catchment	were	compared	using	the	determination	coefficient	(R2)	and	efficiency	
index	(EI)	or	Nash-Sutcliffe	criterion	(Nash	and	Sutcliffe,	1970),	as	presented	in	Equations	
9-10:

(9)

(10)

where, Qm,i is the observed discharge at time i,  is the average value of the observed 
discharge, Qc,i  is the calculated discharge at time i,  is the average value of the calculated 
discharge, and N	is	the	number	of	data	points.	The	best	fit	between	calculated	and	observed	
discharges	using	these	parameters	occurs	when	the	correlation	coefficient	(r)	approaches	1,	
the	efficiency	index	(EI)	approaches	100%,	and	the	overall	root	mean	square	error	(RMSE)	
approaches zero.

RESULTS

Model calibration and verification
 The results of model calibration based on the algorithm mentioned above explicitly 
showed that the calibrated model parameters changed with the source of rainfall data (gauge 
or radar) and the catchment sub-division schemes, as presented in Table 3. The set of the model 
parameters for each simulation case determined from model calibration was then validated 
using	data	from	May-September	2004	and	May-July	2005	to	determine	whether	the	calibrated	
model parameters could be applied to other rainfall events. The results of three statistical 
measures comparing the simulated and observed discharges for each gauge catchment and 
each rainfall data type during calibration and validation periods are summarized in Table 4. 
Examples	of	time	series	plots	comparing	observed	and	calculated	flow	hydrographs	during	
the	calibration	and	verification	periods	at	runoff	station	P.24A	are	presented	in	Figures	3-4,	
respectively.
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Table 3.	 Set	 of	 the	 calibrated	model	 parameters	 for	 different	model	 structure	 and	 rainfall	 
 measurement types.

Station
Catchment 
subdivision 

schemes

Gauge rainfall (GR) Radar rainfall (RR)

α β IL PR IF α β IL PR IF

P.21

100% 0.30 5 40 0.07 700 0.50 5 0 0.19 700
50% 0.50 5 40 0.11 1000 0.50 6 0 0.19 700
25% 0.50 5 50 0.07 700 0.50 6 0 0.19 700
12% 0.50 6 50 0.07 700 0.50 7 0 0.19 700
7% 0.50 6 40 0.07 800 0.50 8 0 0.19 700

P.24A

100% 0.50 6 60 0.17 700 0.20 5 10 0.13 1500
50% 0.50 8 60 0.17 700 0.20 5 10 0.11 1200
25% 0.50 9 60 0.17 700 0.30 5 10 0.11 1400
12% 0.50 9 60 0.17 700 0.20 5 10 0.09 1300
7% 0.50 9 60 0.15 700 0.30 5 10 0.09 1200

P.71

100% 0.40 5 100 0.05 700 0.10 5 50 0.19 1100
50% 0.50 5 100 0.05 700 0.20 5 50 0.19 1400
25% 0.40 6 100 0.05 700 0.20 5 50 0.19 1500
12% 0.50 8 100 0.05 700 0.30 5 50 0.17 800
7% 0.50 9 100 0.05 700 0.30 5 50 0.17 900

	 Table	 4	 indicates	 that	 the	 accuracy	 of	 the	 calculated	 flow	 hydrographs	 changed	
with simulation periods, spatial and temporal distribution of rainfall measurement types, and 
catchment	structural	complexity.	Applying	the	calibrated	model	parameters	without	adjusting	
the	 values	 reduced	 the	 accuracy	 of	 the	 results	 in	 the	 verification	 period	 compared	 to	 the	
calibration period, as shown by the mostly increasing R2	and	EI	values.	Figures	3	and	4	show	
the	differences	in	the	runoff	hydrograph	patterns	derived	from	the	two	types	(gauge	and	radar)	
of	rainfall	measurements.	The	radar	rainfall	better	estimated	runoff	than	the	gauge	rainfall	for	
data	between	August	17	–	September	16,	2003,	while	the	inverse	applied	for	data	between	
July	3-18,	2003.	The	estimated	runoff	hydrographs	for	different	subdivision	schemes	appeared	
similar	based	on	the	subjective	evaluation;	it	was	difficult	to	identify	the	accuracy	of	runoff	
estimates. 
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Table 4.	Statistical	measures	during	the	calibration	and	verification	periods	for	each	simulation	 
 scenario.

Sta.

Catchment 

subdivision 

schemes

Calibration period Verification periods
2003 2004 2005

R2 EI RMSE R2 EI RMSE R2 EI RMSE
GR RR GR RR GR RR GR RR GR RR GR RR GR RR GR RR GR RR

P.21

100% 0.70 0.59 86.2 64.6 2.64 3.56 0.55 0.55 70.3 80.3 3.39 2.90 0.44 0.71 69.2 80.1 3.57 2.60
50% 0.69 0.58 85.6 68.5 2.70 3.61 0.48 0.56 68.1 80.0 3.45 2.93 0.46 0.72 70.2 80.3 3.47 2.59
25% 0.73 0.62 87.4 76.2 2.52 3.46 0.47 0.66 72.2 81.6 3.45 2.81 0.40 0.74 61.9 82.4 3.60 2.44
12% 0.73 0.63 87.7 76.5 2.50 3.44 0.48 0.66 71.7 82.3 3.48 2.75 0.40 0.76 62.0 83.1 3.59 2.40
7% 0.73 0.62 87.7 76.1 2.49 3.45 0.46 0.61 71.4 81.5 3.50 2.82 0.45 0.61 64.9 74.7 3.46 2.32

P.24A

100% 0.63 0.71 79.6 83.7 2.79 2.49 0.42 0.40 44.3 61.6 3.11 3.29 0.31 0.32 62.4 62.4 2.20 2.16
50% 0.64 0.73 77.3 85.0 2.77 2.39 0.47 0.43 66.3 63.8 3.09 3.20 0.31 0.34 62.6 63.7 2.19 2.12
25% 0.64 0.74 79.7 85.6 2.78 2.34 0.47 0.46 66.2 65.3 3.09 3.13 0.30 0.35 62.2 64.2 2.21 2.10
12% 0.64 0.73 79.9 85.1 2.76 2.38 0.48 0.48 67.4 67.4 3.04 3.04 0.31 0.33 62.3 63.4 2.20 2.13
7% 0.63 0.73 79.4 85.3 2.80 2.36 0.49 0.49 67.2 67.8 3.05 3.02 0.30 0.33 61.8 63.2 2.22 2.13

P.71

100% 0.71 0.70 81.0 81.2 7.20 7.16 0.31 0.44 57.6 64.3 7.66 7.02 0.42 0.61 52.7 78.0 5.81 3.10
50% 0.70 0.73 81.2 83.0 7.17 6.80 0.32 0.46 58.1 65.7 7.61 6.89 0.45 0.63 48.6 79.2 5.96 3.01
25% 0.70 0.74 81.1 84.1 7.18 6.58 0.34 0.50 59.0 67.6 7.53 6.82 0.48 0.65 46.9 80.1 6.02 2.94
12% 0.70 0.76 81.0 85.2 7.19 6.36 0.31 0.51 57.8 68.4 7.64 6.60 0.48 0.65 41.6 80.5 6.21 2.92

0.70 0.77 81.0 85.6 7.21 6.26 0.32 0.51 58.2 68.5 7.60 6.60 0.50 0.65 40.4 80.3 6.36 2.93

Figure 3.	 Calculated	flow	hydrographs	using	the	gauge	rainfall	data	at	the	P.24A	catchment	 
 during the calibration period.
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Figure 4.	 Calculated	flow	hydrographs	using	the	radar	rainfall	data	at	the	P.24A	catchment	 
 during the calibration period.

Effects of catchment subdivision complexity and rainfall resolution on runoff estimates
	 Since	this	research	aimed	to	investigate	the	influence	of	increasing	model	complexity	
(by changing the number of sub-catchments) and using alternative rainfall types (gauge and 
radar	measurements)	on	the	performance	of	runoff	modelling,	the	simulation	scenario	which	
gave	the	best	fit	between	simulated	and	measured	hydrographs	was	considered	most	suitable.	
To test this, only the catchment subdivision schemes and rainfall resolution (gauge and radar 
rainfall)	were	changed,	and	the	model	parameters	(α,	β,	IL,	PR,	and	IF)	were	fixed	for	the	
analysis	at	each	runoff	station.	Ten	different	sets	of	model	parameters	significantly	changed	
with	the	subdivision	scheme	and	rainfall	input	for	each	runoff	station	(Table	3).	To	avoid	a	
biased outcome from the analysis, each set of model parameters was used to simulate 10 sets 
of	flow	hydrographs	using	the	5	subdivision	schemes	and	2	rainfall	data	types	as	inputs.	As	
a	result,	the	model	was	run	10	×	5	×	2	(one	hundred)	times	for	each	runoff	station	and	each	
data	period,	and	 the	accuracy	of	overall	flow	hydrographs	among	all	simulation	cases	was	
evaluated	using	RMSE,	as	summarized	in	Tables	5-7.
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Table 5.	 Performance	 of	 runoff	 estimation	 for	 different	 simulation	 cases	 at	 P.21	 based	 on	 
	 average	RMSE	(m3/s).

Input
Catchment subdivision schemes

100% 50% 25% 12% 7%
Gauge rainfall during 2003 4.179 3.906 4.206 4.345 4.401
Radar rainfall during 2003 4.230 4.166 4.090 4.051 4.078
Gauge rainfall during 2004 5.110 5.153 5.351 5.578 5.761
Radar rainfall during 2004 3.786 3.839 3.623 3.563 3.585
Gauge	rainfall	during	2005 4.040 3.708 4.260 4.383 4.153
Radar	rainfall	during	2005 2.997 2.934 2.849 2.794 2.731
Total	Average	(2003-2005)	for	gauge	rainfall	
(%	Increment	of	average	RMSE	from	 
the	minimum	RMSE	for	gauge	rainfall	data)

4.443 4.256 4.605 4.769 4.771
(4.39%) (0.00%) (8.21%) (12.05%) (12.11%)

Total	Average	(2003-2005)	for	radar	rainfall
(%	Increment	of	average	RMSE	from	 
the	minimum	RMSE	for	radar	rainfall	data)

3.671 3.646 3.521 3.469 3.465

(5.96%) (5.23%) (1.62%) (0.13%) (0.00%)

(% error between average gauge and radar rainfall) (17.37%) (14.33%) (23.55%) (27.25%) (27.39%)

Note:	The	scenarios	in	which	gauge	rainfall	(bold)	and	radar	rainfall	(double	underline)	provided	the	minimum	
average	RMSE	are	indicated.

Table 6.	 Performance	of	runoff	estimation	for	different	simulation	cases	at	P.24A	based	on	 
	 average	RMSE	(m3/s).

Input
Catchment subdivision schemes

100% 50% 25% 12% 7%
Gauge rainfall during 2003 3.228 3.099 3.145 3.176 3.225
Radar rainfall during 2003 3.115 3.049 3.085 3.070 3.016
Gauge rainfall during 2004 3.445 3.351 3.369 3.364 3.393
Radar rainfall during 2004 3.577 3.489 3.460 3.343 3.334
Gauge	rainfall	during	2005 2.282 2.242 2.276 2.303 2.331
Radar	rainfall	during	2005 2.243 2.147 2.138 2.174 2.170
Total	Average	(2003-2005)	for	gauge	rainfall	
(%	Increment	of	average	RMSE	from	 
the	minimum	RMSE	for	gauge	rainfall	data)

2.985 2.897 2.930 2.948 2.983
(3.03%) (0.00%) (1.13%) (1.73%) (2.96%)

Total	Average	(2003-2005)	for	radar	rainfall
(%	Increment	of	average	RMSE	from	 
the	minimum	RMSE	for	radar	rainfall	data)

2.978 2.895 2.894 2.862 2.840
(4.86%) (1.93%) (1.90%) (0.78%) (0.00%)

(% error between average gauge and radar rainfall) (0.22%) (0.08%) (1.23%) (2.89%) (4.79%)

Note:	The	scenarios	in	which	gauge	rainfall	(bold)	and	radar	rainfall	(double	underline)	provided	the	minimum	
average	RMSE	are	indicated.
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Table 7.	 Performance	 of	 runoff	 estimation	 for	 different	 simulation	 cases	 at	 P.71	 based	 on	 
	 average	RMSE	(m3/s).

Input
Catchment subdivision schemes

100% 50% 25% 12% 7%
Gauge rainfall during 2003 11.920 12.187 12.431 12.978 13.525
Radar rainfall during 2003 9.877 9.479 9.340 8.966 8.849
Gauge rainfall during 2004 10.195 10.433 10.628 11.068 11.430
Radar rainfall during 2004 7.776 7.636 7.628 7.416 7.396
Gauge	rainfall	during	2005 8.616 8.856 8.968 9.274 9.533
Radar	rainfall	during	2005 3.746 3.611 3.583 3.421 3.379
Total	Average	(2003-2005)	for	gauge	rainfall	
(%	Increment	of	average	RMSE	from	 
the	minimum	RMSE	for	gauge	rainfall	data)

10.243 10.492 10.676 11.107 11.496
(0.00%) (2.43%) (4.22%) (8.43%) (12.23%)

Total	Average	(2003-2005)	for	radar	rainfall
(%	Increment	of	average	RMSE	from	 
the	minimum	RMSE	for	radar	rainfall	data)

7.133 6.909 6.850 6.601 6.542
(9.04%) (5.61%) (4.72%) (0.91%) (0.00%)

(% error between average gauge and radar rainfall) (30.37%) (34.15%) (35.83%) (40.57%) (43.10%)

Note:	The	scenarios	in	which	gauge	rainfall	(bold)	and	radar	rainfall	(double	underline)	provided	the	minimum	
average	RMSE	are	indicated.

	 The	average	RMSE	values	among	five	subdivision	schemes	at	the	specific	simulation	
period	 for	 each	 rainfall	measurement	 type	 and	 runoff	 station	were	 compared	 to	 assess	 the	
relative	 benefits	 of	 using	 the	 two	 types	 of	 rainfall	 input	 data	 (Tables	 5-7).	 To	 ensure	 the	
effectiveness	of	model	structural	complexity	and	rainfall	resolution	on	runoff	estimates,	the	
percentage	of	 an	 increment	 of	 the	 average	RMSE	 from	 the	minimum	RMSE	 (among	five	
catchment network schemes) of each rainfall measurement type was considered. 
	 For	gauge	rainfall,	the	scheme-50%	provided	the	best	average	RMSE	at	stations	P.21	
and	P.	24A	and	the	scheme-100%	at	station	P.71;	the	most	complex	scheme	(scheme-7%)	did	
not	provide	the	minimum	at	any	runoff	station.	In	contrast,	 the	radar	rainfall	generated	the	
minimum	average	RMSE	using	the	most	complex	scheme	(scheme-7%)	at	all	runoff	stations.	
For radar rainfall, the performance of scheme-12% was almost as good in most cases.  
	 The	total	average	RMSE	(2003-05)	for	each	rainfall	category	and	subdivision	scheme	
are	shown	in	Figure	5.	This	shows	that	runoff	estimate	accuracy	rises	with	increasing	sub-
catchment complexity when using radar rainfall data, and the inverse for gauge rainfall data.
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Figure 5. Comparisons	 of	 the	 average	 RMSE	 values	 of	 the	 two	 types	 of	 rainfall	 inputs	 
 for various catchment subdivision schemes.

DISCUSSION

	 According	to	the	calibration	and	validation	results,	the	accuracy	of	streamflow	estimates	
in	the	verification	period	were	less	accurate	than	during	the	calibration	period.	This	is	to	be	
expected,	because	 the	model	parameters	change	significantly	with	rainfall	depths	and	their	
distribution; using the calibrated model parameters without readjustment does not represent 
the other perfectly. This has also been shown in other studies (Han et al., 2013; Zhang et al.,  
2013;	Mapiam	 et	 al.,	 2014).	We	 found	 appreciable	 differences	 in	 hydrograph	 distribution	
when	we	compared	the	time	series	plots	for	different	resolutions	of	rainfall	inputs	(see	Figures	
3-4	for	an	example).	This	agreed	with	the	assumption	that	the	patterns	of	flow	hydrograph	
are	significantly	influenced	by	the	spatial	and	temporal	distribution	of	rainfall	(Singh,	1997;	
Mapiam et al., 2014). 
 Coupling the high resolution of the radar rainfall data with more complex sub-catchment 
schemes	in	the	semi-distributed	model	improved	the	accuracy	of	runoff	modelling.	In	contrast,	
with	 gauge	 rainfall	 data,	 increasing	 model	 structural	 complexity	 did	 not	 improve	 runoff	
estimates. This may be because the poor temporal and spatial resolution of the generated, 
daily, gauge rainfall data was not representative of rainfall behavior over each sub-catchment.



CMU J. Nat. Sci. (2018) Vol. 17(2) 141

	 The	 highest	 degree	 of	 catchment	 subdivision	 complexity	 (scheme-7%)	 yielded	 the	
maximum	percentage	 improvement	 (9%)	 in	 runoff	 estimates	 compared	 to	 no	 subdivisions	
(scheme-100%).	 Although	 the	 percentage	 improvement	 appears	 small,	 it	 is	 significant,	
especially	for	major	flood	events	in	a	large	river	basin.	As	the	scheme-12%	provided	nearly	
as	 accurate	 estimates	 as	 the	 scheme-7%,	 the	 additional	 structural	 complexity	 added	 little	
performance; we recommend dividing a catchment into a minimum of approximately eight 
sub-catchments,	together	with	using	high-resolution	radar	data,	to	improve	flood	forecasting	
in large basins with a limited ground rainfall measuring network. 
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