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ABSTRACT

	 Overall heat transfer coefficient of helical coiled heat exchanger with graphene-  
deionized water (DI-water) for waste heat recovery of combustion stack gas including 
heat exchanger effectiveness, ε, were experimentally carried out. Various sizes of tube 
diameter (1.2-1.5 cm), coil diameter (19-24.5 cm), and coil pitch (2.8-6 cm) of helical 
coils 1-4 including different heat transfer fluids, DI-water and nanofluid (graphene 
nanoparticles suspended in DI-water) at different particle fractions (0.05, 0.08 wt.%) had 
been experimentally studied. The results based on the LMTD-method of countercurrent 
flows showed that higher graphene fraction resulted in higher values of heat transfer 
rate, overall heat transfer coefficient and heat exchanger effectiveness. The ε*-NTU
performance curves of the helical coils in series connection for DI-water and nanofluid 
with 0.05 wt.% graphene were created from Shah and Sekulić model. The calculated results 
showed that the helical coil 1 gave the best performance. With 5 numbers of this coil and the 
flow rate of 2 L/min, the outlet temperature of the nanofluid at 0.05 wt.% particle fraction 
was 1.3ºC over than that of the DI-water. When the coil number was over 7, the nanofluid 
gave advantage on the outlet temperature compared with the base fluid only slightly.
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exchanger effectiveness



CMU J. Nat. Sci. (2019) Vol. 18(1) 51

INTRODUCTION

	 Waste heat can be classified into high temperature (>650°C), medium temperature (230-
650°C) and low temperature (<230°C) (Zhou et al., 2013). The low temperature waste heat is 
abundant and it could be found generally in exhaust stacks of small boilers and incinerators. 
Helical coil is one of the most suitable heat exchangers for waste heat recovery of combustion 
stack gas due to its simple shape and compactness (Ali, 1994) with low pressure drop in the 
exhaust gas side. In addition, it provides higher inside heat transfer coefficient than the straight 
tube because there is a secondary vortex flow generated inside the coil tube which reduces the 
thermal resistance (Tayde et al., 2014).
	 There are some studies on the heat transfer of fluid flow in a helical coil with common 
heat transfer fluids such as water, air, heat transfer oil, and ethylene glycol. There was a report 
(Janssen and Hoogendoorn, 1978) that showed heat transfer correlation of a fully developed 
laminar convection heat transfer for water/glycerol mixture flowing inside helical coiled tubes 
under the condition of constant wall heat flux with various ratios of tube diameter to coil 
diameter and Reynolds numbers. Dravid et al., (1971) studied the effect of secondary fluid 
motion on laminar water flow heat transfer in helical coiled tubes. The results showed that the 
secondary flow increased the heat transfer coefficient and heat transfer rate since the thermal 
boundary layer became thinner. Schmidt et al., (1967) expressed a correlation of average 
Nusselt number for determining the heat transfer coefficient of different heat transfer fluids, 
oil, water and air, in helical coil including the effects of fluid motion, fluid properties and the 
effect of helical coil dimensions under constant wall heat flux boundary condition. Xin and 
Ebadian, (1997) also stated a correlation with the effects of Reynolds and Prandtl numbers 
and coil dimensions such as tube dimeter and coil diameter on local and average convective 
heat transfer coefficients for air, water, and ethylene glycol flowing inside helical coils under 
the constant wall heat flux condition. The correlations of Schmidt et al., (1967) and Xin and 
Ebadian, (1997) could also be applied for deionized water of which the heat transfer results 
were found to be better than those of normal water (Kong et al., 2018).
	 In recent years, there have been many research works on the use of nanofluids, nano-
sized particles (1-100 nm) such as Al2O3, CuO, SiC, etc. suspended in conventional base 
fluids, to enhance the heat transfer in thermal engineering devices (Mahian et al., 2013). The 
nanofluid thermal conductivities were higher than those of the base fluids and also the heat 
transfer rates. Polvongsri and Kiatsiriroat, (2014) used 20 nm silver particles mixed with water 
at a concentration of 10,000 ppm in a closed-loop flat plate solar collector. The heat transfer 
coefficient inside the collector with the nanofluids was nearly double of that with water. The 
heat transfer enhancements by γ-Al2O3/water and TiO2/water were found in the experimental 
work of Farajollahi et al., (2010). The increase of heat transfer coefficient of ethylene glycol 
and distilled water mixed with TiO2 nanoparticles in double pipe heat exchanger was figured 
out by Chandra and Vasudeva, (2014). The increase of heat transfer coefficient was 13.85% 
and 10.73% at particle volume fraction of 0.02% for with and without helical wire inserts in 
the heat exchanger, respectively. Kahani et al., (2013) compared the heat transfer performance 
of Al2O3 (35 nm) and TiO2 (50 nm) particles suspended in distilled water. The results showed 
that the Al2O3 particles with smaller size and higher thermal conductivity gave better heat 
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transfer performance compared to that of TiO2. In addition, the heat transfer enhancement 
of CuO water based nanofluid in laminar flow at various volume fractions (0.1-0.5%) inside 
helical coil heat exchangers was experimentally investigated by Fule et al., (2017). The 
results showed that the CuO nanoparticles enhanced the heat transfer coefficient of the base 
fluid and the enhancements of heat transfer coefficient were found to be 37.3% and 77.7% at 
particle volume fractions of 0.1% and 0.5%, respectively. Similarly, Bhanvase et al., (2018) 
experimentally investigated intensified convective heat transfer coefficient of water based 
PANI (polyaniline) nanofluid at various  particle volume fractions (0.1-0.5%) in vertical 
helical coiled heat exchanger. The heat transfer coefficient enhancements of PANI nanofluid 
were found to be 10.5% and 70% at particle volume fractions of 0.1% and 0.5%, respectively, 
compared to the base fluid. The heat transfer enhancements of nanofluids containing graphene 
nanoparticles (GNPs) at different particle specific surface areas of 300, 500, 700 m2/g with 
particle concentrations less than 0.1% by weight  were found in the experimental work of 
Mehrali et al., (2014). The latter results indicated higher thermal conductivity of the nanofluid 
which could reach up to 27.64% at the concentration of 0.1 % GNPs with a specific surface 
area of 750 m2/g.
	 According to the previous research works, the use of nanoparticles in base fluids 
could enhance the heat transfer performance of the fluid since the fluid thermal conductivity 
increases which results in better heat transfer coefficient and more heat transfer rate. However, 
very few information of heat transfer performance by nanofluids in heat recovery, particularly, 
heat recovery of combustion stack gas by vertical helical coiled heat exchanger has been 
reported. In this present study, the graphene nanoparticles at particle fractions of 0.05% and 
0.08% by weight suspended in distilled water and the fluids were taken as working fluids. The 
flows were in fully developed laminar regime. The overall heat transfer coefficient and heat 
transfer rate of working fluids were determined under the countercurrent flow LMTD-method. 
In addition, the effectiveness of the heat exchangers was determined and the effectiveness 
curves were created.

MATERIALS AND METHODS

Heat exchanger effectiveness and outlet temperatures of the working fluids
	 Thermal characteristics of helical coil heat exchanger for exchanging heat between 
hot exhaust gas and working fluid inside the coil could be described by heat exchanger 
effectiveness, ε, which is

(ṁcp)min
 is the minimum heat capacity between the heat exchanging fluids. Tgi, and Tfi are the 

inlet temperatures of the hot gas and the working fluid, respectively. 
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Q̇ is the heat rate extracted by the working fluid and it could be calculated as

(UA)s is the product of overall heat transfer coefficient and heat transfer area of the heat 
exchanger and ∆TLm is log-mean temperature difference between hot gas and working fluid. 
	 To increase heat transfer rate and outlet temperature of the working fluid, the heat 
exchangers are connected in series as shown in Figure 1.

Figure 1. Heat exchanger combination in series with countercurrent flow of fluids.

	 In case of the countercurrent flows of the fluid streams with heat exchanger arrangement 
in series connection, Shah and Sekulić (Rohsenow et al., 1985) presented a method for 
calculating overall heat exchanger effectiveness, ε*, when each heat exchanger has the same 
heat exchanger effectiveness, ε, as

	 Therefore, the outlet temperature of the working fluid could be calculated by

	 In this study, the effectiveness curves of heat exchanger were created with the values of  

heat capacity ratio, , and number of transfer unit of helical coil,  

NTU*
min=n.NTUmin, where n is the coil number and NTUmin= (UA)

s
/(ṁcp)min

. To get the  
c values, the hot gas velocity was fixed at 0.66 m/s therefore the hot gas mass flow rate was 
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fixed. With a stack diameter of 0.3 m, the measured gas average temperature and the gas 
properties which were assumed to be the same as those of air, the (ṁcp)g could be evaluated. 
By varying the mass flow rate of the working fluid and the measured average fluid temperature, 
the (ṁcp)f could be also calculated.

Experimental set-up
	 Four copper helical coils of which the descriptions were shown in Figure 2 and the 
details were listed in Table 1, were experimentally investigated for heat transfer characteristics 
with different heat transfer fluids (DI-water and DI-water based graphene nanofluid). Each 
coil was installed inside a combustion stack of 0.3 m in diameter. The hot combustion gas 
generated by LPG gas burner, shown in Figure 3, flowed through the helical coil with the 
average gas velocity of 0.66 m/s. A set of nine calibrated Type-K thermocouples was installed 
to measure temperatures at three cross-sectional levels (Figure 3), bottom, middle, and top of 
the helical coil. At each section level of the helical coil, three thermocouples were installed for 
measuring the hot gas temperature inside the stack (To), the coil surface temperature (Ts) and 
the water temperature inside the coil (Ti). The stack was well insulated.

Table 1.	 Description of experimental coils.

Items Dimensions
Coil di

(m)
do

(m)
D

(m)
p/di

-
N
-

L
(m)

H
(m)

1 0.015 0.016 0.245 2 14    11.67 0.65
2 0.012 0.013 0.245 2.5 14    10.5 0.68
3 0.012 0.013 0.245 4 14    11.02 0.82
4 0.012 0.013     0.19 4 14      9.38 0.82
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Figure 2. Helical coil schematic sketch and heat transfer direction.

	 The hot gas temperature was controlled to be around 200°C and the gas velocity flowing 
inside the stack was 0.66 m/s (the air properties were taken for the hot gas calculation). The 
volume flow rates of the working fluids both DI-water and DI-water/GNPs were varied in a  

range of 0.25-2 L/min corresponding to the Reynolds number (Rei = ) of 500-7,000. The  

inlet temperatures of the working fluids were varied in a range of 30-50°C. The accuracies of 
the experimental instruments were described in Table 2.
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Figure 3. Experimental setup.

Table 2.	 Accuracies of the experimental measuring instruments.

Tools Characteristics Accuracy
Data-logger 
S220-T8

Measuring the temperatures of fluids, coil surface,  
and ambient temperature.

±0.05°C

Thermocouple 
type K

Range: −200 to 350 °C ±0.5°C

Flow meter Measure water flow rate
Range: 0-2 l/min

±1%

Water pump QPM60 pompa, SUMOTO
Measuring water flow rate
Range: 5-40 l/min

±2%

Air blower Model: SB-30
Blowing air into system to generate hot gas
Range: 1-7 m3/min

±5%

	 The uncertainties of heat transfer rate δQ̇uncert and overall convective heat transfer 
coefficient δUs,uncert could be found from uncertainty standard equation as
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	 The results of the uncertainties were calculated and listed in Table 3. The maximum 
value was around 10 %.

Table 3.	 Uncertainties of some important parameters, heat transfer rate and overall heat  
	 transfer coefficient.

δAs

(m2)
δρ

(kg/m3)
δCp

(J/kg.k )
δV̇

(m3/s)
δT

(℃)
δ∆TLm

(℃)
δQ̇
(W)

δUs

(W/m2.K)
0.017 5 1 1.67e-7 0.7 1.06 88.17 1.59
(3.8%) (0.51%) (0.02%) (1%) (1.5%) (0.8%) (10.8) (9.9%)

Nanofluid preparation
	 In this study, the DI-water and DI-water based graphene nanofluid at graphene particle 
fractions of 0.05 and 0.08% by weight were selected for the working fluids inside the helical 
coils. The specifications of graphene nanoplatelets with particle fraction of 0.05 and 0.08 
wt.% were listed in Table 4. The particles were mixed with DI-water by 40 kHz ultrasonic 
generator for 30 minutes. The thermal and the rheological properties of the working fluid 
were determined at the average fluid bulk temperature between the coil inlet and coil outlet 
temperatures of the working fluid. The details of the properties and the stability of the nanofluid 
were described in the M.Eng. dissertation of Kong et al., (2018) and some of the results were 
shown in Figure 4.

Table 4.	 Specification of graphene nanoplatelets.

Property Description
Particle GNPs
Type Black powder
Carbon content >99.5%
Density 2,250 kg/m3

Particle diameter 2µm
Specific surface area 500 m2/g
Thickness 2nm
Thermal conductivity 3,000 W/ m.K (Parallel to surface)

6 W/m.K (Perpendicular to surface)
Specific heat 700 J/kg.K 
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Figure 4.	 Thermal properties of DI-water/GNPs nanofluids at various temperatures: 
	 (a) thermal conductivity, (b) viscosity, and (c) specific heat. (Kong et al., 2018).

RESULTS

Heat transfer rate by DI-water and nanofluids 
	 Based on the temperature difference between the coil inlet and outlet temperatures of 
the working fluids, the heat transfer rates extracted by the working fluids from the hot gas 
were evaluated using equation (2) and shown in Figure 5.
	 The results showed that the heat rates increased with the increase of Reynolds number 
or the flow rate of the working fluids. The inside coil Reynolds number was calculated using 
fluid properties determined at average fluid bulk temperature between the coil inlet and 
coil outlet temperatures of the working fluid. The presence of the particles in the base fluid 
increased significantly the heat transfer rate due to the higher thermal conductivity of the 
nanofluid.
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Figure 5.	 Heat transfer rates extracted by DI-water and graphene nanofluids at particle  
	 fraction of 0.05 wt.% with different helical coils.

Overall heat transfer coefficient of helical coils
	 The overall heat transfer coefficients of the helical coiled heat exchanger could be 
determined from the heat transfer rate extracted by the working fluids shown in Figure 5 
and the log-mean temperature difference between the fluid streams using equation (2). The 
results of the overall heat transfer coefficients of all helical coils with DI-water and nanofluid 
at particle fraction of 0.05 wt.% were shown in Figure 6. The results showed that the overall 
heat transfer coefficient increased with the increase of inside Reynolds number or flow rate of 
the working fluids.
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Figure 6.	 Overall heat transfer coefficient of the helical coils with DI-water and nanofluid at  
	 0.05 wt.% particle fraction.

	 However, when the Reynolds number was over around 2,000, the overall heat transfer 
coefficient increased slightly, which meant that the gas-side convective heat transfer coefficient 
controlled the overall heat transfer coefficient of the heat exchangers. The overall heat transfer 
coefficients with nanofluid showed better trends compared to those with DI-water.

Heat exchanger effectiveness of heat recovery from combustion stack gas
	 The experimental results on heat exchanger effectiveness for single unit of all coils 
were determined using equation (1) for both working fluids, DI-water and nanofluids at 
particle concentration of 0.05 wt.%. With these results, the total effectiveness of the helical 
coils connected in series was performed using equation (4). The overall performance curves 
of the heat exchangers in series connection in terms of heat capacity ratio (c) and number of 
transfer unit (NTU*

min) were also created as shown in Figure 7.
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Figure 7.	 Total effectiveness of helical coils in series connection against total number of  
	 transfer unit. (a) with DI-water and (b) with nanofluid at 0.05 wt.% particle fraction.
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Figure 7.	 Continued.

Outlet temperature of working fluids with number of the helical coils
	 Coil 1 was selected to consider the outlet water temperature of the working fluids, DI-
water and nanofluid at particle fraction of 0.05 wt.%, due to its better heat transfer performance 
(Figure 7) compared to other coils (coil 2-4). The working fluid outlet temperatures were 
simulated with the number of helical coils connected in series using equation (5). The 
simulated outlet temperature profiles with various flow rates of working fluids were shown in 
Figure 8. The fluid inlet temperatures were fixed at 30°C.
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Figure 8.	 Calculated outlet temperatures of the DI-water and the nanofluid at various flow  
	 rates (the values 0.75- 2 were in L/min) with the helical coil number (coil 1).

DISCUSSION 

	 From Figure 4, the thermal conductivities of the nanofluids increased around 13.4 
and 21.4% and the specific heat capacities decreased around 0.04 and 0.07% for particle 
concentrations of 0.05 and 0.08 wt.%, respectively. Therefore, the nanofluid could enhance 
the heat transfer coefficient and the higher working fluid outlet temperature could be achieved. 
However, the increase of particle concentration was limited since higher particle concentration 
in base fluid could generate greater viscosity. Around 21.8 and 40.4% increases of nanofluid 
viscosity were found for 0.05 and 0.08 wt.% GNPs, respectively, compared to that of pure DI-
water. High viscosity could reduce the stability of the nanofluids and generate more friction 
and higher pressure drop of the fluid flow inside the tube Mehrali et al., (2014). It should be 
recommended that the concentration of the nanoparticles should be less than 0.1 wt.%. 
	 From Figure 5, it could be noted that coil 1 (surface area of 0.54 m2) gave the best 
performance due to its highest heat transfer surface area followed by coil 3 (surface area of 0.4 
m2) and coil 2 (surface area of 0.38 m2). For coil 4, even the surface area was smallest (surface 
area of 0.34 m2), but the obtained heat transfer rate was close to coil 3 and higher than coil 2 
because coil 4 was installed around the center of the stack where the gas flow velocity was 
nearly maximum. In addition, the coil diameter was smaller, then the liquid side heat transfer 
coefficient was more turbulent, therefore, the overall heat transfer coefficient was higher as the 
results shown in Figure 6. 
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	 In Figure 5, the nanofluids also showed better heat transfer performance for all coils 
compared with DI-water. The heat transfer rates extracted by the nanofluids at particle fraction 
of 0.05 wt.% or 0.02% in volume fraction increased around 13.1 % for coil 1, 16.8 % for coil 2, 
17.6 % for coil 3, and 18.2 % for coil 4 since the heat transfer coefficient of the working fluid 
increased around 23.2%, 21.4%, 24%, and 25% for coils 1, 2, 3 and 4, respectively, compared 
to the results of DI-water. These results possessed better heat transfer performance compared 
to that of the ethylene glycol-DI-water/TiO2 (0.02 % TiO2) (Chandra and Vasudeva., 2014) 
and water/PANI (polyaniline) (0.1 % PANI) (Bhanvase et al., 2018) nanofluids that could 
increase heat transfer coefficient around 13.8% and 10.5 %, respectively, due to high thermal 
conductivity of GNPs.
	 Figure 6 showed overall heat transfer coefficient of the helical coils with DI-water 
and nanofluid at 0.05 wt.% particle fraction. It could be found that the overall heat transfer 
coefficients were enhanced for the units with nanofluids. When the liquid-side Reynolds 
number was over 2,000, the values could be increased from 14-16 for DI-water to around16-18 
W/m2.K  for the nanofluids. When the liquid-side Reynolds number was less than 2,000, the 
values from 6-14 were up to 8-16 W/m2.K, respectively. 
	 The heat exchanger effectiveness with the NTU*

min of the coils in series connection is 
presented in Figure 7. It could be found that the effectiveness curves of the nanofluid were 
slightly higher than those of DI-water at a given value of NTU*

min, which meant that the 
nanofluid enhanced the heat exchanger performance. The outlet temperatures of the nanofluid 
were found to be higher than those of the DI-water and these were confirmed by the results in 
Figure 8. 
	 With a good trend of higher performance curves, helical coil 1 was selected for coil 
outlet temperature of the working fluid. For 5 units of coils 1 in series connection, with 
the working fluid flow rates of 0.75 and 2 L/min, the outlet temperatures of the nanofluid 
containing graphene nanoparticles at 0.05 wt.% were 2.5 and 1.3°C over than those of the DI-
water, respectively. In addition, when the unit number was over 7, the outlet temperatures of 
the working fluids slightly increased, particularly for high fluid flow rates. 
	 From the study, it could be noted that the GNPs with suitable particle concentrations 
could enhance very well the working fluid heat transfer performance and also the heat exchanger 
effectiveness. For helical coils, the unit with bigger tube diameter should be selected to get 
higher heat transfer surface area and the coil installation should be close to the center of the 
stack. 
	 The stability of the nanofluid flowing in the coiled tube is also another main aspect. The 
particle deposition on the heat transfer surface and the long-term performance of the nanofluid 
should be studied in more details.
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CONCLUSION

	 In this research paper, the waste heat recovery from combustion stack gas was carried 
out by helical coiled heat exchangers having DI-water and nanofluid as working fluids in fully 
developed laminar flows.  The results on the thermal characteristics of the heat recovery could 
be noted as 

•	 The nanoparticles could enhance very well the thermal performance of the base fluid 
(DI-water). The nanofluid had higher thermal conductivity and lower specific heat 
capacities, which resulted in better heat transfer coefficient and higher working fluid 
outlet temperature compared to those from pure DI-water.

•	 The ε*-NTU*
min performance curves of helical coils in series connection were created 

from Shah and Sekulić model. The heat exchanger performances were increased 
with the increase of coil number. The nanofluid also gave better heat exchanger 
performance than the base fluid (DI-water). 

•	 The outlet temperature of the nanofluid was found to be higher than that of the 
base fluid. For coil 1, with 5 coil numbers and the flow rate of 2 L/min, the outlet 
temperature of the nanofluid was 1.3°C over than that of the DI-water. When the coil 
number was over 7, the nanofluid gave advantage on the outlet temperature compared 
with the base fluid only slightly.
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Nomenclature:
	 ∆TLm 	 log-mean temperature difference (LMTD) [K]
	 d	 coiled tube diameter [m]
	 p	 coil pitch [m]
	 D	 coil diameter [m]
	 N	 number of coil turns
	 L	 coil length [m]
	 H	 coil height [m]
	 Re	 Reynolds number (Re = )
	 NTU	 number of transfer of a single unit of coil, (* for many units in series connection)
	 ε	 effectiveness of a single unit of coil [%], (* for many units in series connection)
	 n	 number of coils in series connection
	 T	 temperature [°C]
	 GNPs	 graphene nanoplatelets
	 cp	 specific heat [J/kg. K]
	 c	 heat capacity ratio [dimensionless]



CMU J. Nat. Sci. (2019) Vol. 18(1)66

	ṁ	  mass flow rate [kg/s]
	 Q̇	 heat transfer rate [w]
	 q	 heat flux [w/m2]
	 h	 convective heat transfer coefficient [w/m2.K]
	 U	 overall heat transfer coefficient [w/m2.K]
	 A	 heat exchanger surface area [m2]
	 k	 thermal conductivity [w/m.K]

Subscripts: 
	 i	 inside or inlet
	 o	 outside or outlet
	 f	 working fluid side
	 g	 hot gas side
	 nf	 nanofluid
	 s	 tube wall surface
	 min	 minimum 
	 max	 maximum
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