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ABSTRACT

	 This study investigated the effect of different sub-division schemes and two rainfall 
data types – gauge and radar – on the accuracy of runoff forecasting using a semi-distributed 
hydrological URBS model in a large river basin with a limited network of rainfall gauges. 
The entire catchments at three runoff stations in the Upper Ping River Basin, Thailand, 
were employed initially as a single lumped unit, and each catchment was thereafter divided 
into four increasingly complex subdivision schemes. Model performance was compared 
using areal gauge rainfall data (from the sparse rain gauge network) and estimated, high-
resolution, radar rainfall data across all catchment schemes over three periods; June-
October 2003, May-September 2004, and May-July 2005. The results indicated that the 
accuracy of runoff estimates increased with increasing catchment subdivision complexity 
when using the high-resolution radar rainfall, but did not improve with the rain gauge data.

Keywords: Catchment subdivision, Radar rainfall, Rain gauge rainfall, Semi-distributed 
model

INTRODUCTION

	 Hydrological modelling is a non-structural tool for predicting water runoff in a 
catchment basin. The models are of three types: lumped, semi-distributed, and distributed 
(Cunderlik, 2003; Jajarmizadeh et al., 2012). The lumped model is the simplest; it assumes that 
precipitation and model parameters are uniform over the basin. The larger the basin and more 
variable its characteristics, the less accurate this model becomes (Koren et al., 1999). The semi-
distributed model allows for partial spatial variations in precipitation, streamflow routing, and 
catchment by sub-dividing the catchment area; this improves predictive performance (Boyle 
et al. 2001). The distributed model allows the modeler to specify the spatial resolution over 
which to fully vary the model parameters; this provides the most accurate runoff estimates, 
but is highly complex, requiring significant data parameterization (Arnold et al., 1998). 
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Researchers develop models with higher degrees of structural complexity in the expectation 
of improving prediction accuracy (Perrin et al., 2001; Mayr et al., 2013). However, more 
complicated models normally require more input data, and are difficult to apply, especially for 
catchments with insufficient or no hydrologic data. In addition, the more complex the model, 
the more difficult it is to assess its parameters, leading to large parameter uncertainty (Butts 
et al., 2004). As such, the semi-distributed model offers a reasonable compromise between 
simplicity and complexity for estimating water runoff in areas with limited measuring 
networks. 
	 Factors associated with rainfall and catchment characteristics significantly affect the 
accuracy of runoff estimation (Wilson, 1979; Hamlin, 1983). Semi-distributed models with 
complex catchment subdivision schemes can help account for the spatial variation of rainfall 
and catchment characteristics, such as topography, land use, or soil properties (Ajami et al., 
2004). However, several studies found that high-resolution sub-catchments do not necessarily 
improve model performance for a variety of reasons, including the theories and concepts of 
the selected models being compared, the sensitivity and uncertainty of model parameters, 
catchment and climate characteristics, and data quality (Han et al., 2013; Zhang et al., 2013). 
	 This study focuses on the effect of rainfall data quality on the accuracy of runoff 
modelling in a country, Thailand, with a limited capacity/network to measure continuous 
ground rainfall – a major constraint to effective modeling. Rain gauge measurements from 
this sparse network cannot spatially represent rainfall distribution over the basin. As such, this 
study investigated whether adding more structural complexity (by subdividing the catchment 
into finer scale) to only coarse resolution of rainfall gauge data could lead to a better model 
and simulation results. We also investigated whether combining higher resolution rainfall 
data from radar, as opposed to ground gauges, with finer resolution of sub-catchments would 
improve model results. Our research then demonstrated the relative benefits offered by 
applying gauge and radar rainfall data to different catchment subdivision scales to simulate 
the runoff hydrograph in the Upper Ping River Basin, Thailand.

MATERIALS AND METHODS

Semi-distributed model
	 This study used the Unified River Basin Simulator (URBS), a semi-distributed, non-
linear, rainfall-runoff-routing model that can account for the spatial and temporal variation 
of rainfall. Carroll (2007) developed the URBS model based on research by Laurenson and 
Mein (1990). Both the Australian Bureau of Meteorology and the Chiangjiang (Yangtze) 
Water Resources Commission in China have used the model to forecast floods (Malone, 
2003; Jordan et al., 2004; Pengel et al., 2007). Mapiam and Sriwongsitanon (2009) used the 
URBS model for flood estimation on the gauged catchments in the Upper Ping River Basin; 
they later formulated a relationship for using the model on the ungauged catchments of the 
basin. Subsequently, Mapiam et al. (2014) applied the URBS model with three types of radar 
and rain gauge rainfall inputs with different temporal and spatial resolution to investigate the 
best model for flow simulation in the Upper Ping River Basin. They found that radar rainfall 
data was more accurate than rain gauge data for estimating hourly runoff of the overall flow 
hydrographs.
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	 Using the URBS mode, this study first divided the catchment (study area described 
below) into sub-catchments. The excess rainfall estimation for each sub-catchment was 
later calculated using an initial loss – proportional runoff model (IL-PR) for pervious areas 
and a spatial infiltration model for impervious areas. The accumulated rainfall depth at the 
beginning period of simulation (Ri) was deducted by an initial loss (mm) until the Ri exceeded 
the maximum initial loss (IL, mm). The proportional loss using proportional runoff coefficient 
(pr, dimensionless) was incorporated. The pervious excess rainfall depth at time t (Rt 

per) was 
given by:

(1)

(2)

where Rt 
tot  is the rainfall depth during a time interval (Δt) – 1 hour in this study. The accumulated 

initial loss at time t (ili) was described as below:

(3)

The effective fraction of the area that is impervious (     ) was given by Equation 4:

(4)

where     is existing fraction of the impervious area (this study assumed     = 0),    is the 
cumulative infiltration into the pervious area starting from the beginning of a simulation 
period,          is the maximum infiltration capacity of the sub-catchment (IF parameter). Excess 
rainfall (Rt) at time t on the corresponding sub-catchment was calculated using Equation 5:

(5)

where        is the impervious runoff coefficient (the default is 1) and       is calculated using  
the IL-PR model. 
	 After determining excess rainfall for each sub-catchment, we conventionally applied 
the catchment routing and channel models to estimate runoff at the outlet using Equations 6 
and 7, respectively:

(6)

(7)
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where for Equation 6,          is the catchment storage (m3s-1 h) of each sub-catchment, β is the 
catchment lag parameter (h/km) for each sub-catchment, A is an area of sub-catchment (km2), 
m is the dimensionless catchment non-linearity parameter, and Q is the outflow of catchment 
storage (m3/s) of the corresponding sub-catchment. For Equation 7,        is the channel storage  
(m3s-1 h) for each sub-catchment, α is the channel lag parameter (h/km) for each sub-catchment, 
L is the length of a reach (km) considered in channel routing, Qu is the inflow at the upstream 
end of a reach (including sub-catchment inflow, Q, calculated using Equation 6), Qd is the 
outflow at the downstream end of a channel reach (m3s-1) of the corresponding sub-catchment, 
and x is the Muskingum translation parameter.
	 From Equations 1 to 7, seven parameters are required to run the model: channel lag 
(α), catchment nonlinearity (m), Muskingum translation (x), catchment lag (β), initial loss 
(IL), proportional amount of runoff (PR), and maximum infiltration rate (IF). Parameters 
α , m, x, and β are related to runoff routing and IL, PR, and IF are related to rainfall loss 
modelling. Since the values of m and x do not normally vary significantly from 0.8 and 0.3, 
respectively (Carroll, 2007; Jordan et al., 2004), we used these values in our model. The other 
five parameters (α, β, IL, PR, and IF) were determined during calibration and verification. 

Study areas and data collection
	 The study area was three point locations – runoff stations P.21, P.24A, and P.71 – in the 
Upper Ping River Basin, Thailand. The basin landform is undulating terrain. The catchment 
areas of these three stations are approximately 515, 460, and 1,771 km2, respectively (Figure 
1). Rainfall data was collected from 35 daily rain gauges in the study area, owned and operated 
by the Royal Irrigation Department and the Thai Meteorological Department. The study used 
radar reflectivity data from the Omkoi Radar, owned and operated by the Department of Royal 
Rainmaking and Agricultural Aviation. The continuous runoff data was collected from that 
recorded at stations P.21, P.24A, and P.71. Locations of rain gauge runoff stations and the 
radar radius are shown in Figure 1.
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Figure 1.	 The locations of the gauge catchment areas (P.21, P.24A, and P.71), radar, rain  
	 gauges, and runoff stations.

Catchment subdivision schemes
	 To investigate the effect of the degree of structural complexity on runoff modelling, 
the gauge catchments over the three runoff stations (P.21, P.24A, and P.71) were each divided 
into sub-catchments to enhance model complexity. A series of catchment subdivision levels 
were configured by considering topography and catchment characteristics. Five subdivision 
schemes were then constructed by delineating each sub-catchment into an equivalent size as 
the percentage of the whole area of each gauge catchment as follows: 100% (scheme-100%), 
50% (scheme-50%), 25% (scheme-25%), 12% (scheme-12%), and 7% (scheme-7%) of the 
whole area. Locations of the centroid of each sub-catchment at each scenario were specified 
and the distance from the centroid to the outlet of the corresponding sub-catchment, or centroid 
length, was then calculated for constructing river network schematization. Total rainfall depth 
and calibrated model parameters were assumed to be uniform over each sub-catchment. 
Two alternative rainfall measures – gauge and radar rainfall data – were assessed at the sub-
catchment level (described in the next section) and used in the URBS model to convert to 
excess rainfall using Equations 1-5. The estimated excess rainfall over a sub-catchment was 
routed through the catchment storage, located at the centroid of that sub-catchment, to the 
channel using the catchment routing technique, as shown in Equation 6; afterward, the outflow 
from the catchment storage, which is the inflow of channel storage (Qu) was routed along 
a reach (the centroid length) to the next downstream sub-catchment, using the Muskingum 
method (Equation 7). The number of sub-catchments (NSC), the sub-catchment area (SCA), 
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and the centroid length (CL) are the three sub-catchment variables needed to construct the 
catchment network at each catchment subdivision scheme in the URBS model. The sub-
catchment variables corresponding to each catchment subdivision scheme at each runoff 
station are presented in Table 1 and Figure 2.

Table 1.  Sub-catchment variables of the URBS model for each catchment subdivision scheme.
Details (Scheme-100%) (Scheme-50%) (Scheme-25%) (Scheme-12%) (Scheme-7%)

P.21 P.24A P.71 P.21 P.24A P.71 P.21 P.24A P.71 P.21 P.24A P.71 P.21 P.24A P.71
NSC 1 1 1 2 2 2 4 4 4 8 7 8 10 9 15

Mean SCA (km2) 515 460 1,771 258 230 886 129 115 443 64 66 221 52 51 118

Range of SCA (km2) 515 460 1,771 175-

340

190-

270

835-

937

102-

167

82-148 360-

500

50-98 30-100 125-

328

25-77 23-100 63-147

Range of CL (km) 29 22 62 12-18 7-17 10-43 4-17 0.6-14 9-38 1.5-10 0.6-7 3-24 0.5-8 0.6-7 1.5-19

Figure 2.	 Catchment subdivision schemes for P.21, P.24A, and P.71 catchments.

Assessment of rainfall inputs
	 This study used two different measures of rainfall input distributed over each sub-
catchment area – gauge rainfall and radar rainfall. Data from these parameters from June-
October 2003 were used to calibrate the model. Data from May-September 2004 and May-
July 2005 were used to verify the model.
	 Gauge rainfall. Daily gauge rainfall data located within 160 km from the Omkoi radar 
was collected for analysis. The data were controlled for quality by considering rainfall data 
from adjacent gauges and ensuring consistency in the ensuing double mass curves. If unusual 
rainfall data were found, these were excluded from the analysis. Rain gauge data of acceptable 
quality was then spatially averaged using the Inverse Distance Weighting (IDW) technique for 
each sub-catchment. IDW is a simple interpolation approach that has been widely used in many 
applications (Dirks et al., 1998; Chinchorkar et al. 2012). Under conditions of insufficient data 
density, IDW performs better than other statistical interpolation methods like multiple linear 
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regression, optimal interpolation, or Kriging (Eischeid et al., 2000). Catchment studies with a 
limited rain gauge network select IDW to assess areal rainfall.
	 Radar rainfall. Weather radar has been used as an alternative tool for providing 
high-resolution spatial and temporal rainfall estimates, especially in areas with insufficient 
rainfall stations, like Thailand, in order to enhance flood prediction accuracy. Mapiam and 
Sriwongsitanon (2008) first developed a climatological Z-R relationship (Z=74R1.6) based 
on daily data for converting instantaneous reflectivity data into rainfall rate in the Upper 
Ping River Basin. However, Mapiam et al. (2009) found that using the daily (24-hour) Z-R 
relationship to estimate hourly radar rainfall can lead to significant errors when estimating 
extreme rainfall. To reduce this error, the scale-transformed hourly Z-R relationship (Z=88R1.6) 
proposed by Mapiam et al. (2009) has been recommended for estimating hourly radar rainfall; 
it improves overall runoff estimates (Mapiam et al., 2014). Before applying the reflectivity 
data with the Z-R relationship, radar reflectivity measurement errors need to be eliminated. 
Since the Omkoi radar used in this study is an S-band Doppler radar, beam attenuation error 
was assumed to be insignificant (Hitschfeld and Bordan, 1954; Delrieu et al., 2000). To avoid 
the bright band effect, we only used radar reflectivity data within 160 km of the radar. 
	 The effect of ground clutter and beam blocking was eliminated by using a topography 
map of known ground clutter locations and discarding radar measurement in these areas. 
The effect of noise and hail in the measured radar reflectivity was addressed by assuming 
reflectivity values less than 15 dBZ to represent a reflectivity of 0 mm6 m-3, and those greater 
than 53 dBZ to equal 53 dBZ, respectively. After eliminating these errors, the radar reflectivity 
data was converted into radar rainfall by applying the relationship Z=88R1.6 at all pixels located 
in the three gauged catchments. The radar rainfall for each sub-catchment with a 1 km2 spatial 
resolution was estimated by averaging radar rainfall of all pixels located within a considered 
sub-catchment using a simple arithmetic averaging method.

Parameterization of the URBS model
	 Model calibration and verification followed conventional procedures to ascertain the 
five control parameters (α, β, IL, PR, and IF) of the URBS model corresponding to each 
rainfall data set (guage and radar) and catchment sub-division scheme. The calculated rainfall 
during June-October 2003 was used to calibrate the model; data from May-September 2004 
and May-July 2005 was used to verify the model. Unfortunately, the URBS model cannot be 
calibrated automatically. To reach the optimal set of model parameters for each scenario, we 
thus applied a simple optimization technique called a grid-base parameter search developed 
by Mapiam et al. (2014). Overall root mean square error (RMSE) between the calculated and 
measured discharges for each simulation case was used as the objective function, as shown in 
the following equation:

	 	 	 Root mean square error (RMSE) = 	 (8)
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	 To evaluate the performance of each rainfall type and catchment structural complexity 
based on the calibrated parameter application, the hourly calculated and observed hydrographs 
at each gauge catchment were compared using the determination coefficient (R2) and efficiency 
index (EI) or Nash-Sutcliffe criterion (Nash and Sutcliffe, 1970), as presented in Equations 
9-10:

(9)

(10)

where, Qm,i is the observed discharge at time i,  is the average value of the observed 
discharge, Qc,i  is the calculated discharge at time i,  is the average value of the calculated 
discharge, and N is the number of data points. The best fit between calculated and observed 
discharges using these parameters occurs when the correlation coefficient (r) approaches 1, 
the efficiency index (EI) approaches 100%, and the overall root mean square error (RMSE) 
approaches zero.

RESULTS

Model calibration and verification
	 The results of model calibration based on the algorithm mentioned above explicitly 
showed that the calibrated model parameters changed with the source of rainfall data (gauge 
or radar) and the catchment sub-division schemes, as presented in Table 3. The set of the model 
parameters for each simulation case determined from model calibration was then validated 
using data from May-September 2004 and May-July 2005 to determine whether the calibrated 
model parameters could be applied to other rainfall events. The results of three statistical 
measures comparing the simulated and observed discharges for each gauge catchment and 
each rainfall data type during calibration and validation periods are summarized in Table 4. 
Examples of time series plots comparing observed and calculated flow hydrographs during 
the calibration and verification periods at runoff station P.24A are presented in Figures 3-4, 
respectively.
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Table 3.	 Set of the calibrated model parameters for different model structure and rainfall  
	 measurement types.

Station
Catchment 
subdivision 

schemes

Gauge rainfall (GR) Radar rainfall (RR)

α β IL PR IF α β IL PR IF

P.21

100% 0.30 5 40 0.07 700 0.50 5 0 0.19 700
50% 0.50 5 40 0.11 1000 0.50 6 0 0.19 700
25% 0.50 5 50 0.07 700 0.50 6 0 0.19 700
12% 0.50 6 50 0.07 700 0.50 7 0 0.19 700
7% 0.50 6 40 0.07 800 0.50 8 0 0.19 700

P.24A

100% 0.50 6 60 0.17 700 0.20 5 10 0.13 1500
50% 0.50 8 60 0.17 700 0.20 5 10 0.11 1200
25% 0.50 9 60 0.17 700 0.30 5 10 0.11 1400
12% 0.50 9 60 0.17 700 0.20 5 10 0.09 1300
7% 0.50 9 60 0.15 700 0.30 5 10 0.09 1200

P.71

100% 0.40 5 100 0.05 700 0.10 5 50 0.19 1100
50% 0.50 5 100 0.05 700 0.20 5 50 0.19 1400
25% 0.40 6 100 0.05 700 0.20 5 50 0.19 1500
12% 0.50 8 100 0.05 700 0.30 5 50 0.17 800
7% 0.50 9 100 0.05 700 0.30 5 50 0.17 900

	 Table 4 indicates that the accuracy of the calculated flow hydrographs changed 
with simulation periods, spatial and temporal distribution of rainfall measurement types, and 
catchment structural complexity. Applying the calibrated model parameters without adjusting 
the values reduced the accuracy of the results in the verification period compared to the 
calibration period, as shown by the mostly increasing R2 and EI values. Figures 3 and 4 show 
the differences in the runoff hydrograph patterns derived from the two types (gauge and radar) 
of rainfall measurements. The radar rainfall better estimated runoff than the gauge rainfall for 
data between August 17 – September 16, 2003, while the inverse applied for data between 
July 3-18, 2003. The estimated runoff hydrographs for different subdivision schemes appeared 
similar based on the subjective evaluation; it was difficult to identify the accuracy of runoff 
estimates. 
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Table 4.	Statistical measures during the calibration and verification periods for each simulation  
	 scenario.

Sta.

Catchment 

subdivision 

schemes

Calibration period Verification periods
2003 2004 2005

R2 EI RMSE R2 EI RMSE R2 EI RMSE
GR RR GR RR GR RR GR RR GR RR GR RR GR RR GR RR GR RR

P.21

100% 0.70 0.59 86.2 64.6 2.64 3.56 0.55 0.55 70.3 80.3 3.39 2.90 0.44 0.71 69.2 80.1 3.57 2.60
50% 0.69 0.58 85.6 68.5 2.70 3.61 0.48 0.56 68.1 80.0 3.45 2.93 0.46 0.72 70.2 80.3 3.47 2.59
25% 0.73 0.62 87.4 76.2 2.52 3.46 0.47 0.66 72.2 81.6 3.45 2.81 0.40 0.74 61.9 82.4 3.60 2.44
12% 0.73 0.63 87.7 76.5 2.50 3.44 0.48 0.66 71.7 82.3 3.48 2.75 0.40 0.76 62.0 83.1 3.59 2.40
7% 0.73 0.62 87.7 76.1 2.49 3.45 0.46 0.61 71.4 81.5 3.50 2.82 0.45 0.61 64.9 74.7 3.46 2.32

P.24A

100% 0.63 0.71 79.6 83.7 2.79 2.49 0.42 0.40 44.3 61.6 3.11 3.29 0.31 0.32 62.4 62.4 2.20 2.16
50% 0.64 0.73 77.3 85.0 2.77 2.39 0.47 0.43 66.3 63.8 3.09 3.20 0.31 0.34 62.6 63.7 2.19 2.12
25% 0.64 0.74 79.7 85.6 2.78 2.34 0.47 0.46 66.2 65.3 3.09 3.13 0.30 0.35 62.2 64.2 2.21 2.10
12% 0.64 0.73 79.9 85.1 2.76 2.38 0.48 0.48 67.4 67.4 3.04 3.04 0.31 0.33 62.3 63.4 2.20 2.13
7% 0.63 0.73 79.4 85.3 2.80 2.36 0.49 0.49 67.2 67.8 3.05 3.02 0.30 0.33 61.8 63.2 2.22 2.13

P.71

100% 0.71 0.70 81.0 81.2 7.20 7.16 0.31 0.44 57.6 64.3 7.66 7.02 0.42 0.61 52.7 78.0 5.81 3.10
50% 0.70 0.73 81.2 83.0 7.17 6.80 0.32 0.46 58.1 65.7 7.61 6.89 0.45 0.63 48.6 79.2 5.96 3.01
25% 0.70 0.74 81.1 84.1 7.18 6.58 0.34 0.50 59.0 67.6 7.53 6.82 0.48 0.65 46.9 80.1 6.02 2.94
12% 0.70 0.76 81.0 85.2 7.19 6.36 0.31 0.51 57.8 68.4 7.64 6.60 0.48 0.65 41.6 80.5 6.21 2.92

0.70 0.77 81.0 85.6 7.21 6.26 0.32 0.51 58.2 68.5 7.60 6.60 0.50 0.65 40.4 80.3 6.36 2.93

Figure 3.	 Calculated flow hydrographs using the gauge rainfall data at the P.24A catchment  
	 during the calibration period.
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Figure 4.	 Calculated flow hydrographs using the radar rainfall data at the P.24A catchment  
	 during the calibration period.

Effects of catchment subdivision complexity and rainfall resolution on runoff estimates
	 Since this research aimed to investigate the influence of increasing model complexity 
(by changing the number of sub-catchments) and using alternative rainfall types (gauge and 
radar measurements) on the performance of runoff modelling, the simulation scenario which 
gave the best fit between simulated and measured hydrographs was considered most suitable. 
To test this, only the catchment subdivision schemes and rainfall resolution (gauge and radar 
rainfall) were changed, and the model parameters (α, β, IL, PR, and IF) were fixed for the 
analysis at each runoff station. Ten different sets of model parameters significantly changed 
with the subdivision scheme and rainfall input for each runoff station (Table 3). To avoid a 
biased outcome from the analysis, each set of model parameters was used to simulate 10 sets 
of flow hydrographs using the 5 subdivision schemes and 2 rainfall data types as inputs. As 
a result, the model was run 10 × 5 × 2 (one hundred) times for each runoff station and each 
data period, and the accuracy of overall flow hydrographs among all simulation cases was 
evaluated using RMSE, as summarized in Tables 5-7.
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Table 5.	 Performance of runoff estimation for different simulation cases at P.21 based on  
	 average RMSE (m3/s).

Input
Catchment subdivision schemes

100% 50% 25% 12% 7%
Gauge rainfall during 2003 4.179 3.906 4.206 4.345 4.401
Radar rainfall during 2003 4.230 4.166 4.090 4.051 4.078
Gauge rainfall during 2004 5.110 5.153 5.351 5.578 5.761
Radar rainfall during 2004 3.786 3.839 3.623 3.563 3.585
Gauge rainfall during 2005 4.040 3.708 4.260 4.383 4.153
Radar rainfall during 2005 2.997 2.934 2.849 2.794 2.731
Total Average (2003-2005) for gauge rainfall 
(% Increment of average RMSE from  
the minimum RMSE for gauge rainfall data)

4.443 4.256 4.605 4.769 4.771
(4.39%) (0.00%) (8.21%) (12.05%) (12.11%)

Total Average (2003-2005) for radar rainfall
(% Increment of average RMSE from  
the minimum RMSE for radar rainfall data)

3.671 3.646 3.521 3.469 3.465

(5.96%) (5.23%) (1.62%) (0.13%) (0.00%)

(% error between average gauge and radar rainfall) (17.37%) (14.33%) (23.55%) (27.25%) (27.39%)

Note: The scenarios in which gauge rainfall (bold) and radar rainfall (double underline) provided the minimum 
average RMSE are indicated.

Table 6.	 Performance of runoff estimation for different simulation cases at P.24A based on  
	 average RMSE (m3/s).

Input
Catchment subdivision schemes

100% 50% 25% 12% 7%
Gauge rainfall during 2003 3.228 3.099 3.145 3.176 3.225
Radar rainfall during 2003 3.115 3.049 3.085 3.070 3.016
Gauge rainfall during 2004 3.445 3.351 3.369 3.364 3.393
Radar rainfall during 2004 3.577 3.489 3.460 3.343 3.334
Gauge rainfall during 2005 2.282 2.242 2.276 2.303 2.331
Radar rainfall during 2005 2.243 2.147 2.138 2.174 2.170
Total Average (2003-2005) for gauge rainfall 
(% Increment of average RMSE from  
the minimum RMSE for gauge rainfall data)

2.985 2.897 2.930 2.948 2.983
(3.03%) (0.00%) (1.13%) (1.73%) (2.96%)

Total Average (2003-2005) for radar rainfall
(% Increment of average RMSE from  
the minimum RMSE for radar rainfall data)

2.978 2.895 2.894 2.862 2.840
(4.86%) (1.93%) (1.90%) (0.78%) (0.00%)

(% error between average gauge and radar rainfall) (0.22%) (0.08%) (1.23%) (2.89%) (4.79%)

Note: The scenarios in which gauge rainfall (bold) and radar rainfall (double underline) provided the minimum 
average RMSE are indicated.
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Table 7.	 Performance of runoff estimation for different simulation cases at P.71 based on  
	 average RMSE (m3/s).

Input
Catchment subdivision schemes

100% 50% 25% 12% 7%
Gauge rainfall during 2003 11.920 12.187 12.431 12.978 13.525
Radar rainfall during 2003 9.877 9.479 9.340 8.966 8.849
Gauge rainfall during 2004 10.195 10.433 10.628 11.068 11.430
Radar rainfall during 2004 7.776 7.636 7.628 7.416 7.396
Gauge rainfall during 2005 8.616 8.856 8.968 9.274 9.533
Radar rainfall during 2005 3.746 3.611 3.583 3.421 3.379
Total Average (2003-2005) for gauge rainfall 
(% Increment of average RMSE from  
the minimum RMSE for gauge rainfall data)

10.243 10.492 10.676 11.107 11.496
(0.00%) (2.43%) (4.22%) (8.43%) (12.23%)

Total Average (2003-2005) for radar rainfall
(% Increment of average RMSE from  
the minimum RMSE for radar rainfall data)

7.133 6.909 6.850 6.601 6.542
(9.04%) (5.61%) (4.72%) (0.91%) (0.00%)

(% error between average gauge and radar rainfall) (30.37%) (34.15%) (35.83%) (40.57%) (43.10%)

Note: The scenarios in which gauge rainfall (bold) and radar rainfall (double underline) provided the minimum 
average RMSE are indicated.

	 The average RMSE values among five subdivision schemes at the specific simulation 
period for each rainfall measurement type and runoff station were compared to assess the 
relative benefits of using the two types of rainfall input data (Tables 5-7). To ensure the 
effectiveness of model structural complexity and rainfall resolution on runoff estimates, the 
percentage of an increment of the average RMSE from the minimum RMSE (among five 
catchment network schemes) of each rainfall measurement type was considered. 
	 For gauge rainfall, the scheme-50% provided the best average RMSE at stations P.21 
and P. 24A and the scheme-100% at station P.71; the most complex scheme (scheme-7%) did 
not provide the minimum at any runoff station. In contrast, the radar rainfall generated the 
minimum average RMSE using the most complex scheme (scheme-7%) at all runoff stations. 
For radar rainfall, the performance of scheme-12% was almost as good in most cases.  
	 The total average RMSE (2003-05) for each rainfall category and subdivision scheme 
are shown in Figure 5. This shows that runoff estimate accuracy rises with increasing sub-
catchment complexity when using radar rainfall data, and the inverse for gauge rainfall data.
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Figure 5.	 Comparisons of the average RMSE values of the two types of rainfall inputs  
	 for various catchment subdivision schemes.

DISCUSSION

	 According to the calibration and validation results, the accuracy of streamflow estimates 
in the verification period were less accurate than during the calibration period. This is to be 
expected, because the model parameters change significantly with rainfall depths and their 
distribution; using the calibrated model parameters without readjustment does not represent 
the other perfectly. This has also been shown in other studies (Han et al., 2013; Zhang et al.,  
2013; Mapiam et al., 2014). We found appreciable differences in hydrograph distribution 
when we compared the time series plots for different resolutions of rainfall inputs (see Figures 
3-4 for an example). This agreed with the assumption that the patterns of flow hydrograph 
are significantly influenced by the spatial and temporal distribution of rainfall (Singh, 1997; 
Mapiam et al., 2014). 
	 Coupling the high resolution of the radar rainfall data with more complex sub-catchment 
schemes in the semi-distributed model improved the accuracy of runoff modelling. In contrast, 
with gauge rainfall data, increasing model structural complexity did not improve runoff 
estimates. This may be because the poor temporal and spatial resolution of the generated, 
daily, gauge rainfall data was not representative of rainfall behavior over each sub-catchment.
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	 The highest degree of catchment subdivision complexity (scheme-7%) yielded the 
maximum percentage improvement (9%) in runoff estimates compared to no subdivisions 
(scheme-100%). Although the percentage improvement appears small, it is significant, 
especially for major flood events in a large river basin. As the scheme-12% provided nearly 
as accurate estimates as the scheme-7%, the additional structural complexity added little 
performance; we recommend dividing a catchment into a minimum of approximately eight 
sub-catchments, together with using high-resolution radar data, to improve flood forecasting 
in large basins with a limited ground rainfall measuring network. 
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